News | Computer-Aided Detection Software | October 06, 2015

Study suggests computer-aided detection could reduce number of missed nodules and false positives

hybrid CAD scheme, computer-aided detection, lung nodule detection, Medical Physics, low-dose CT scans

Image courtesy of Vital Images


October 6, 2015 — A novel computer-aided detection (CAD) scheme based on a hybrid multi-classifier method could enhance early detection of lung nodules on computed tomography (CT) images and help in the earlier diagnosis of lung cancer, suggests new research. The research was published in the September issue of Medical Physics, the monthly journal of the American Association of Physicists in Medicine (AAPM).

Every year 160,000 people die of lung cancer, making it the number one cancer killer. Early detection and treatment of lung cancer is key to saving lives. The National Lung Screening Trial (NLST) — which was launched in 2002 and enrolled 53,454 high-risk subjects at the time of reporting — showed a 15 to 20 percent lower risk of dying from lung cancer when screened using low-dose CT scans compared to the chest X-rays. However, reading the large number of CT scans can be a burden for a radiology practice. The CAD method with high sensitivity and specificity could help reduce both the number of nodules that could be missed but may be lung cancer, as well as the number of false positives that are unnecessarily followed up and/or biopsied.

“A big challenge of CAD for lung cancer screening is the wide diversity of lung nodule morphology seen on CT,” said Lin Lu, Ph.D., first author of the article and postdoc research fellow at Columbia University Medical Center, New York. “Our strategy is to categorize and partition nodule candidates into different groups based on their location, size and shape, so that each group possesses more homogenous morphological characteristics of nodules and can be assigned a more appropriate algorithm to improve the performance of CAD.”

In the study, researchers evaluated 631 lung nodules on 294 CT scans from the National Cancer Institute’s Lung Image Database Consortium (LIDC) database, which were acquired to facilitate a test-bed for CAD algorithms. The image data sets were randomly divided into two independent subsets: a training set of 196 scans and a test set of 98 scans. The hybrid method achieved a sensitivity of 87 percent with 2.61 false positives per scan on the training dataset and a sensitivity of 85.2 percent and 3.13 false positives per scan on the testing dataset. The hybrid method was compared to and outperformed six recent CAD schemes.

Co-authors of the study in addition to Lu are Yongqiang Tan, Ph.D., Lawrence H. Schwartz, M.D., and Binsheng Zhao, D.Sc. (corresponding author).

For more information: www.scitation.aip.org


Related Content

News | FDA

Nov. 26, 2025 — a2z Radiology AI has received U.S. FDA clearance for a2z-Unified-Triage, a single device that flags and ...

Time December 03, 2025
arrow
News | RSNA 2025

Nov. 13, 2025 — Nano-X Imaging Ltd., a medical imaging technology company, will showcase its Nanox.ARC X multi-source ...

Time November 25, 2025
arrow
News | Interventional Radiology

Nov. 12, 2025 — On Nov. 11, Huntsman Cancer Institute at the University of Utah (the U) opened its first specialized ...

Time November 13, 2025
arrow
Feature | Teleradiology | Kyle Hardner

Once viewed as a solution for after-hours coverage, teleradiology is rapidly expanding into a critical part of radiology ...

Time November 06, 2025
arrow
News | Magnetic Resonance Imaging (MRI) | Children's Hospital Los Angeles

Oct. 28, 2025 — Bronchopulmonary dysplasia (BPD) is the most common — and most serious — complication of extreme ...

Time October 31, 2025
arrow
News | Radiology Imaging | UC San Diego Health

Oct. 16, 2025 — A strategic collaboration between UC San Diego Health and GE HealthCare will focus on bringing advanced ...

Time October 20, 2025
arrow
News | X-Ray

Sept. 08, 2025 — A new clinical case study, presented by Qure.ai and Hacettepe University, Turkey, at the IASLC World ...

Time September 10, 2025
arrow
News | Mammography

Sept. 3, 2025 — According to ARRS’ American Journal of Roentgenology (AJR), a commercial artificial intelligence (AI) ...

Time September 09, 2025
arrow
News | Focused Ultrasound Therapy

Aug. 26, 2025 — In a quest for ever-more-effective treatments for pancreatic cancer, HonorHealth Research Institute is ...

Time August 29, 2025
arrow
News | Lung Imaging

Aug. 26, 2025 — Optellum, a global leader in AI for lung health, recently announced the world’s first thorax CT ...

Time August 26, 2025
arrow
Subscribe Now