CT scan, radiation dose management, UC Davis

March 25, 2014 – UC Davis clinicians and physicists have recommended new strategies to make computed tomography (CT) safer, including adoption of a new metric for dose measurement, ways to manage exposure protocols that differ by CT brand and specific approaches to reduce exposure during needle biopsies. The recommendations are detailed in papers published in the March issue of the Journal of the American College of Radiology (JACR).
 
In response to concerns about the radiation dose in CT, JACR devoted the entire issue to CT safety. The federal government estimates that more than 80 million CT scans are performed in the United States each year. UC Davis specialists contributed three studies to the special issue.
 
CT is a powerful diagnostic technology that images organs and other internal structures. These scans can both detect life-threatening conditions and rule them out, giving clinicians precise information to develop a care plan. But there are risks. Ionizing radiation can damage cells and has been found to be a weak carcinogen. The challenge for radiologists and medical physicists is to find the optimal dosage for each CT exam.
 
“The higher the dose, the better the images,” said John Boone, vice chair of research in the department of radiology. “But you also want the lowest possible doses. So you need to find that balance between acceptable image quality and acceptable dosage.”
 
In the paper “Dose is Not Always What it Seems” Anthony Seibert, professor of radiology, and his colleagues discuss the need to improve dose calculations. They point to an actual case in which a pediatric patient who had scans before and after surgery appeared to receive an overdose on the second CT. Further investigation showed that the problem was a misleading metric — the volume CT dose index (CTDIvol), a standard measure of radiation output in CT. Manufacturers use phantoms along with instruments that measure radiation to assess CTDIvol. However, different companies use phantoms of different sizes. In addition, many dose estimates are based on adult sizes, making pediatric estimates more difficult.
 
“In this case, the difference was the way the manufacturers handled the metrics,” said Seibert. “A large phantom tends to underestimate dose, while a small phantom tends to overestimate it. When we compensated for the different-sized phantoms, it turned out the patient received almost the same dose in both scans.”
 
To help prevent future problems, the team recommended a new metric, size-specific dose estimate (SSDE), which provides a better way to measure patient dose and can also help compare scanners from different companies. It also addresses the dire need to more accurately estimate doses from CT across a range of patient sizes, from newborn to NFL linebacker.
 
“I think SSDE is one step closer to a dose metric that will be more accurate in depicting the actual risk to patients,” said Seibert.
 
This is not the only area where differences between scanners can obscure dosage. In another paper, “Methods for CT Automatic Exposure,” Boone, Seibert and colleagues addressed the challenges of optimizing different machines.
 
Physicists and radiologists must set up automatic exposure protocols, which vary doses based on tissue thickness. However, since manufacturers use different methods to control doses, transferring these settings between machines can be difficult and time-consuming.
 
“It takes a lot of effort to optimize any given scanner,” said Boone. “Going through the procedures for every possible exam could take two years.”
 
To ease the way, the UC Davis team developed equations to translate settings among three machines, two made by GE and one by Siemens. The proposed approach provides a more efficient way to manage CT protocols between different CT scanners.
 
A third paper, “Radiation Dose Optimization for CT-Guided Interventional Procedures” outlines how practitioners can lower radiation doses while performing interventional procedures under CT guidance. CT is often used to guide these procedures, ensuring the needle is precisely located.
 
Ramit Lamba, director of CT, outlines a number of methods to reduce radiation doses for both patients and doctors performing the procedures. He recommends using ultrasound, instead of CT, to guide some biopsies. He also recommends reducing scan lengths, lowering the tube current using dose-efficient scanning modes and limiting the number of guidance scans.
 
The special JACR issue is one piece of an ongoing effort to reduce CT risks. As part of the University of California Dose Optimization and Standardization Endeavor (UCDOSE), all five UC medical centers are collaborating to improve CT protocols and education.
 
“We’re trying to educate radiologists and medical physicists because the practice of CT is not consistent,” said Boone. “If someone is using higher doses to get results they could obtain with less radiation, we need to help them find the safer alternative.”
 
Other researchers included Rebecca Smith-Bindman of UC San Francisco; Sarah E. McKenney, formerly of UC Davis; and Sandra L. Wootton-Gorges of UC Davis. UCDOSE is funded through a pilot grant from the University of California Office of the President.
 
For more information: http://cancer.ucdavis.edu
 

Related Content

News | FDA

Nov. 26, 2025 — a2z Radiology AI has received U.S. FDA clearance for a2z-Unified-Triage, a single device that flags and ...

Time December 03, 2025
arrow
News | RSNA 2025

Nov. 13, 2025 — Nano-X Imaging Ltd., a medical imaging technology company, will showcase its Nanox.ARC X multi-source ...

Time November 25, 2025
arrow
News | Interventional Radiology

Nov. 12, 2025 — On Nov. 11, Huntsman Cancer Institute at the University of Utah (the U) opened its first specialized ...

Time November 13, 2025
arrow
Feature | Teleradiology | Kyle Hardner

Once viewed as a solution for after-hours coverage, teleradiology is rapidly expanding into a critical part of radiology ...

Time November 06, 2025
arrow
News | Radiology Imaging | UC San Diego Health

Oct. 16, 2025 — A strategic collaboration between UC San Diego Health and GE HealthCare will focus on bringing advanced ...

Time October 20, 2025
arrow
News | Mammography

Sept. 3, 2025 — According to ARRS’ American Journal of Roentgenology (AJR), a commercial artificial intelligence (AI) ...

Time September 09, 2025
arrow
News | Lung Imaging

Aug. 26, 2025 — Optellum, a global leader in AI for lung health, recently announced the world’s first thorax CT ...

Time August 26, 2025
arrow
News | RSNA 2025

Aug. 13, 2025 — Registration is now open for the RSNA 111th Scientific Assembly and Annual Meeting, the world’s leading ...

Time August 13, 2025
arrow
News | Artificial Intelligence

July 22, 2025 — GE HealthCare has topped a U.S. Food and Drug Administration (FDA) list of AI-enabled medical device ...

Time July 23, 2025
arrow
News | Breast Imaging

QT Imaging Holdings, Inc. has announced the launch of its latest QTviewer, version 2.8. QTviewer stores and displays the ...

Time July 21, 2025
arrow
Subscribe Now