News | Coronavirus (COVID-19) | March 20, 2020

Researchers Use AI to Detect COVID-19

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Representative examples of the attention heatmaps generated using Grad-CAM method for (a) COVID-19, (b) CAP, and (c) Non-Pneumonia. The heatmaps are standard Jet colormap and overlapped on the original image, the red color highlights the activation region associated with the predicted class. COVID-19 = coronavirus disease 2019, CAP = community acquired pneumonia. Image courtesy of the journal Radiology

March 20, 2020 — An artificial intelligence deep learning model can accurately detect COVID-19 and differentiate it from community acquired pneumonia and other lung diseases, according to this multi-center study published in the journal Radiology.

COVID-19 has widely spread all over the world since the first case was detected at the end of 2019. Early diagnosis of the disease is important for treatment and the isolation of the patients to prevent the virus spread.

A deep learning model named COVID-19 detection neural network (COVNet), was developed to extract visual features from 4,356 computed tomography (CT) exams from 3,322 patients for the detection of COVID-19. Community acquired pneumonia (CAP) and non-pneumonia CT exams were included to test the robustness of the model.

The per-exam sensitivity and specificity for detecting COVID-19 in the independent test set was 90 percent and 96 percent, respectively.

“We were able to collect a large number of CT exams from multiple hospitals, which included 1,296 COVID-19 CT exams,” the authors wrote. “More importantly, 1,735 CAP and 1,325 non-pneumonia CT exams were also collected as the control groups in this study in order to ensure the detection robustness considering that certain similar imaging features may be observed in COVID-19 and other types of lung diseases.”

Read the study, Artificial Intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT.

Read the latest Radiology and Radiology: Cardiothoracic Imaging COVID-19 research at Special Focus: COVID-19.

Related Coronavirus Content:

Study Looks at CT Findings of COVID-19 Through Recovery

VIDEO: Imaging COVID-19 With Point-of-Care Ultrasound (POCUS)

The Cardiac Implications of Novel Coronavirus

CT Provides Best Diagnosis for Novel Coronavirus (COVID-19)

Radiology Lessons for Coronavirus From the SARS and MERS Epidemics

Deployment of Health IT in China’s Fight Against the COVID-19 Epidemic

Emerging Technologies Proving Value in Chinese Coronavirus Fight

Radiologists Describe Coronavirus CT Imaging Features

Coronavirus Update from the FDA

CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia

CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV)

Chest CT Findings of Patients Infected With Novel Coronavirus 2019-nCoV Pneumonia 

Find more related clinical content Coronavirus (COVID-19)

Related Content

Stephen M. Hahn, M.D., Commissioner of Food and Drugs - Food and Drug Administration, discussed The COVID-19 Pandemic — Finding Solutions, Applying Lessons Learned, on June 1

Stephen M. Hahn, M.D., Commissioner of Food and Drugs - Food and Drug Administration

News | Coronavirus (COVID-19) | June 05, 2020
June 5, 2020 — The following speech was delivere
Chief among the myriad practical updates to minimize risks for patients and imaging personnel alike is a tiered approach for delaying both outpatient and inpatient cross-sectional interventional procedures

For procedural delays that will not adversely affect patient outcome, Fananapazir and colleagues proposed the following tiered approach for both outpatient and inpatient scenarios: urgent procedures, procedures that should be performed within 2 weeks, procedures that should be performed within 2 months, and procedures that can safely be delayed 2 or 6 months. Courtesy of American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | June 05, 2020
June 5, 2020 — An...
This is Figure 2 from the article in Radiology: Acute encephalopathy. A 60 year-old-man without history of seizures presenting with convulsion. (A-B) Multifocal areas of FLAIR hyperintensity in the right cerebellum (arrows in A), left anterior cingular cortex and superior frontal gyrus (arrows in B). (C-D) Restricted diffusion in the left anterior cingulate cortex, superior frontal and middle temporal gyrus (arrows in D) and right cerebellum (arrows in E), consistent with cerebellar diaschisis. F)  #COVID19

This is Figure 2 from the article in Radiology: Acute encephalopathy. A 60 year-old-man without history of seizures presenting with convulsion. (A-B) Multifocal areas of FLAIR hyperintensity in the right cerebellum (arrows in A), left anterior cingular cortex and superior frontal gyrus (arrows in B). (C-D) Restricted diffusion in the left anterior cingulate cortex, superior frontal and middle temporal gyrus (arrows in D) and right cerebellum (arrows in E), consistent with cerebellar diaschisis. F) No hemosiderin deposits in gradient echo sequences.

Feature | Coronavirus (COVID-19) | June 02, 2020 | Dave Fornell, Editor
Four recent radiology studies, from New York, Italy, Iran and China, show how...
Developed by medical AI company Lunit, Software detects breast cancer with 97% accuracy; Study in Lancet Digital Health shows that Lunit INSIGHT MMG-aided radiologists showed an increase in sensitivity

Lunit INSIGHT MMG

News | Artificial Intelligence | June 02, 2020
June 2, 2020 — Lunit announced that its artificia...
Nuclear Cardiology Optimistic About Return to Pre-COVID-19 Exam Levels. An American Society of Nuclear Cardiology (ASNC) member survey are confident nuclear cardiology volumes will return to pre-pandemic levels. #COVID19 #SARScov2
News | Nuclear Imaging | June 01, 2020
June 1, 2020 — While acknowledging the challenges their specialty is facing, more than two-thirds of respondents to a
AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
Largest case series (n=30) to date yields high frequency (77%) of negative chest CT findings among pediatric patients (10 months-18 years) with COVID-19, while also suggesting common findings in subset of children with positive CT findings

A and B, Unenhanced chest CT scans show minimal GGOs (right lower and left upper lobes) (arrows) and no consolidation. Only two lobes were affected, and CT findings were assigned CT severity score of 2. Image courtesy of American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | May 29, 2020
May 29, 2020 — An investigation published open-access in the ...
The paradox is that COVID-19 has manifested the critical need for exactly what the rules require: advancement of interoperability and digital online access to clinical data and imaging, at scale, for care coordination and infection control.

The paradox is that COVID-19 has manifested the critical need for exactly what the rules require: advancement of interoperability and digital online access to clinical data and imaging, at scale, for care coordination and infection control. Getty Images

Feature | Coronavirus (COVID-19) | May 28, 2020 | By Matthew A. Michela
One year after being proposed, federal rules to advance interoperability in healthcare and create easier access for p