News | Magnetic Resonance Imaging (MRI) | November 02, 2017

Post-Concussion Brain Changes Persist for Pre-Teen Hockey Players

New study finds brains continue to rewire three months later with no symptoms reported

Post-Concussion Brain Changes Persist for Pre-Teen Hockey Players

November 2, 2017 — Young hockey players who have suffered concussions may still show changes in the white matter of the brain months after being cleared to return to play, researchers at Western University have found. These findings were achieved through use of sophisticated magnetic resonance imaging (MRI) techniques.

The study, published in the Oct. 25, 2017, online issue of Neurology, the medical journal of the American Academy of Neurology, looked at MRI brain scans from 17 Bantam-level hockey players between the ages of 11 and 14, who suffered a concussion during the regular season and who were compared to an age-matched control of non-concussed players.

The athletes underwent brain MRI testing within 24-72 hours of the initial concussion, and again three months post-concussion, at which time all players reported no symptoms on clinical evaluations and were cleared to return to play following the standard concussion consensus Return to Play protocol. Most of the concussions were a result of falls that resulted in a hit to the back of the head.

"What the MRI shows is that there are still changes occurring in the brain even after the clinical tests have returned to normal," said Ravi Menon, Ph.D., professor at Western's Schulich School of Medicine & Dentistry and a scientist at Robarts Research Institute. "This is potentially of some concern and we'd like to understand this further to determine if these are normal healthy changes or if they are indicative of something that might be going wrong."

The advanced MRI data was analyzed by Ph.D. candidate Kathryn Manning at Western's Centre for Functional and Metabolic Mapping at Robarts Research Institute. The team looked at diffusion, functional and spectroscopy MRI data. On both the acute and the three-month scans, researchers observed that the very long fiber tracks in the brains of the concussed players were damaged, and also saw 'hyper-connectivity' in some areas of the brain, suggesting the brain may still have been trying to compensate for the injury.

"We saw that there were prolonged abnormalities in terms of the white matter in the brain," said Manning, noting that these changes are only visible using high field-strength MRI and these sophisticated analytical methods. "On a normal clinical MRI scan, you typically see the structural images of the brain, and for a mild brain injury like a concussion, we aren't able to see the underlying changes we were able to see using these advanced methods."

Lisa Fischer, M.D., assistant professor at Schulich Medicine & Dentistry, treats concussions at The Fowler Kennedy Sport Medicine Clinic, supported by Western University and London Health Sciences Centre. For her, this news is promising for concussion diagnosis. "If we can come up with a clinically-relevant, objective measure for concussion diagnosis and recovery, we can make safer decisions about return to play," she said. "This study has the potential to help develop that."

For more information: www.neurology.org

Related Content

RSNA Study Shows Real-Time Indicator Improves Mammographic Compression
News | Mammography | December 12, 2018
Sigmascreening recently announced that more than 100,000 women have had mammography exams with the Sensitive Sigma...
Canon Aquilion One CT Helps Gates Vascular Institute Adhere to New Stroke Guidelines
News | Computed Tomography (CT) | December 12, 2018
In stroke, time saved on imaging is time gained in the treatment window. The recently updated guidelines from the...
Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

News | Neuro Imaging | December 07, 2018
Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football...
Siemens Healthineers Debuts Magnetom Altea 1.5T MRI Scanner
Technology | Magnetic Resonance Imaging (MRI) | December 06, 2018
During the 104th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA), Nov. 25-30...
GE Healthcare Unveils New Applications and Smart Devices Built on Edison Platform
Technology | Artificial Intelligence | December 05, 2018
GE Healthcare recently announced new applications and smart devices built on Edison – a platform that helps accelerate...
NeuroLogica and MaxQ AI Announce Distribution Agreement
News | Stroke | November 30, 2018
Clinical diagnostics intelligence platform company MaxQ AI and Samsung NeuroLogica announced a distribution agreement...
Snoring Poses Greater Cardiac Risk to Women
News | Women's Health | November 29, 2018
Obstructive sleep apnea (OSA) and snoring may lead to earlier impairment of cardiac function in women than in men,...
Vital Showcases Enterprise Imaging Advances at RSNA 2018

Global Illumination from Vital Images

News | Enterprise Imaging | November 28, 2018
Vital, a Canon Group company, will highlight the latest additions to its enterprise imaging portfolio at the 2018...
Artificial Intelligence May Help Reduce Gadolinium Dose in MRI

Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose. Image courtesy of Enhao Gong, Ph.D.

News | Contrast Media | November 27, 2018
Researchers are using artificial intelligence (AI) to reduce the dose of a contrast agent that may be left behind in...