News | May 06, 2013

NYU, NYU Langone Researchers Devise Method for Enhancing CEST MRI

Work hopes to improve MRI for cartilage as well as for brain tissue

May 6, 2013 — Researchers at New York University and NYU Langone Medical Center have created a novel way to enhance magnetic resonance imaging (MRI) by reducing interference from large macromolecules that can often obscure images generated by current chemical exchange saturation transfer (CEST) methods.

Their work appears in the Nature publishing group journal Scientific Reports and hopes to improve MRI for cartilage as well as for brain tissue.

"We have found a way to eliminate signals of certain molecules and thereby clean up the image of parts of the body that could be used by medical professionals in order to make diagnoses," explained Alexej Jerschow, one of the study’s authors and a professor in NYU's Department of Chemistry.

The researchers' work aims to improve a decade-old method, chemical exchange, which has been used to enhance MRI techniques. Under this approach, scientists exploit the movement of atoms from their natural molecular structure to water in the body in order to enhance their visibility.

However, these efforts have often been hindered by the presence of macromolecules, which continue to obscure the smaller molecules that are of interest to doctors and other health-care professionals in making assessments. The macromolecules' interference is the result of two phenomena: their size and their frequencies.

Neutralizing the macro-molecular frequency interference was the focus of the NYU method reported in Scientific Reports.

Previously, authors Jerschow and Ravinder Regatte, professor, Departments of Radiology and Orthopedic Surgery, NYU Langone Medical Center, and colleagues created a non-invasive imaging technique for glycosaminogycans (GAGs), which are molecules that serve as the building blocks of cartilage and are involved in numerous vital functions in the human body. Here, under chemical exchange, they separated out the GAG protons from those of water, creating an inherent contrast agent. Testing the idea in tissue samples, the researchers found that the available GAG protons provided an effective type of contrast enhancement, allowing them to readily monitor GAGs through a clinical MRI scanner.

The researchers focused on improving visibility of GAGs through MRI. But, in this effort, they sought to block the signaling impact of the macromolecules that obscure the observation of GAGs.

To do so, they took advantage of macromolecules' broad frequency spectrum — a trait that allows for easy detection and neutralization. Specifically, the researchers could, in effect, "bleach" the signal out by simultaneously using multiple irradiation frequencies. As a result, macromolecular interference diminished and enhanced the quantitative assessment of GAGs.

"This method gives us the opportunity to correct existing CEST methods by focusing on molecular signals of interest with much better precision than currently exists," explains Regatte.

For more information: www.nature.com/srep

Related Content

Philips Azurion Image-Guided Therapy Platform Improves Clinical Workflow for Interventional Procedures
News | Angiography | November 15, 2017
Philips announced the results of a comprehensive, independent, two-year study demonstrating the clinical workflow...
Study Unveils Brain Changes During Extended Space Missions
News | Neuro Imaging | November 14, 2017
November 14, 2017 — More people today are poised to explore space than ever before; those who do will experience the
Synthetic CT Images Suitable for Prostate Cancer Radiotherapy Planning
News | Treatment Planning | November 14, 2017
Spectronic Medical announced that new data for their MRIPlanner software, generating synthetic computed tomography (sCT...
News | Magnetic Resonance Imaging (MRI) | November 13, 2017
Aspect Imaging announced last week that it received CE marking for the neonatal-dedicated Embrace Neonatal Magnetic...
Hitachi Healthcare Highlights Benefits of High-Field Open MRI in New Supplement

Click here to view the supplement.

News | Magnetic Resonance Imaging (MRI) | November 13, 2017
A new 24-page publication from Hitachi Healthcare details the benefits of High-Field Open MRI and is now available for...
Siemens Healthineers Introduces Share360 Tailored Service Portfolio
News | Imaging | November 10, 2017
November 10, 2017 — To address the specific needs of...
Johns Hopkins Researchers, Carestream Give Presentations on Medical Imaging Advances at RSNA
News | Digital Radiography (DR) | November 09, 2017
November 9, 2017 — Researchers from The Johns Hopkins University School of Medicine and Carestream Health scientists
3D CT image reconstruction of the thoracic organs and the heart using Philips software.
Sponsored Content | Webinar | Advanced Visualization | November 07, 2017
The CME webinar “Innovation and Success in 3D-inspired Development of the Business and Clinical Practice,” will take
Study Suggests Breast Cancer Patients Forego Post-Surgery Treatment Due to Mistrust
News | Radiation Therapy | November 06, 2017
November 6, 2017 — Nearly one-third of women with...
Blood Test Rules Out Breast Cancer Regardless of Density
News | Oncology Diagnostics | November 03, 2017
November 3, 2017 — A new study published in ...
Overlay Init