News | January 13, 2015

Novel Imaging Technique Improves Prostate Cancer Detection

More accurate diagnoses could mean less invasive interventions, more surveillance

Prostate cancer, MRI, restriction spectrum imaging, RSI-MRI, novel, detection

January 13, 2015 — A new novel imaging technique measurably improves upon current prostate imaging and may have significant implications for future treatment of prostate cancer patients, according to a report in the Jan. 6, 2015, issue of the journal Prostate Cancer and Prostatic Disease. The report comes courtesy of a team of scientists and physicians at the University of California, San Diego School of Medicine, with counterparts at the University of California, Los Angeles. 

“This new approach is a more reliable imaging technique for localizing tumors. It provides a better target for biopsies, especially for smaller tumors,” said Rebecca Rakow-Penner, M.D., Ph.D., a research resident in the department of radiology and the study’s first author.

The technique is also valuable in surgical planning and image staging, said David S. Karow, M.D., Ph.D., assistant professor of radiology at UC San Diego and the study’s corresponding author. “Doctors at UC San Diego and UCLA now have a non-invasive imaging method to more accurately assess the local extent of the tumor and possibly predict the grade of the tumor, which can help them more precisely and effectively determine appropriate treatment.”

In 2014, prostate cancer was the leading cause of newly diagnosed cancers in men and the second leading cause of cancer death in men.

The current standard of care for detecting and diagnosing prostate cancer is contrast-enhanced magnetic resonance imaging (MRI), which involves intravenously injecting patients with a contrast agent to highlight blood flow. Greater blood flow is often a requirement of growing cancer cells. When compared to surrounding healthy tissues, it’s hoped that contrast-enhanced MRIs will reveal the shape and nature of any tumors present.

But many tumors do not significantly differ from surrounding healthy tissues with contrast-enhanced MRI and so evade easy detection. An imaging technique called diffusion MRI measures the diffusion of water and has been a standard imaging technique in the brain and an emerging technique in the prostate. Cancer tissues are denser than healthy tissues and typically limit the amount and mobility of water within them. But diffusion MRI suffers from magnetic field artifacts that can distort the actual location of tumors by as much as 1.2 centimeters or roughly half an inch – a significant distance when surgeons are attempting, for example, to assess whether a tumor extends beyond the prostate and into adjacent nerve bundles.

The new approach described in today’s published paper is called restriction spectrum imaging-MRI or RSI-MRI. It corrects for magnetic field distortions and focuses upon water diffusion within tumor cells. By doing both, the ability of imaging to accurately plot a tumor’s location is increased and there is a more refined sense of the tumor’s extent, said Nathan White, Ph.D., assistant project scientist at UC San Diego, study co-author and co-inventor of the RSI-MRI technique.

In a related paper to be published in the journal Frontiers in Oncology, the same team of researchers reported that RSI-MRI appears to predict tumor grade. Higher-grade tumors correlate with higher restricted water volume in the cancer cells’ large nuclei.

“Prostate cancer can often be an indolent disease, where a patient may only require surveillance rather than aggressive surgery,” noted co-author Christopher J. Kane, M.D., professor of urology at UC San Diego.

“If by imaging we could predict the tumor grade,” added Robert Reiter, M.D., professor of urology at UCLA, “we may be able to spare some patients from prostate resection and monitor their cancer with imaging.”

For more information: www.healthsciences.ucsd.edu

Related Content

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
Videos | Radiation Therapy | May 21, 2019
This is a walk through of the ViewRay MRIdian MRI-guided radiotherapy system installed at ...
Partial Breast Irradiation Effective, Convenient Treatment Option for Low-Risk Breast Cancer
News | Radiation Therapy | May 20, 2019
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast...
AI Detects Unsuspected Lung Cancer in Radiology Reports, Augments Clinical Follow-up
News | Artificial Intelligence | May 20, 2019
Digital Reasoning announced results from its automated radiology report analytics research. In a series of experiments...
360 Photos | Magnetic Resonance Imaging (MRI) | May 17, 2019
This is a dedicated cardiac Siemens 1.5T MRI system installed at the Baylor Scott White Heart Hospital in Dallas.
New Study Evaluates Head CT Examinations and Patient Complexity
News | Neuro Imaging | May 17, 2019
Computed tomography (CT) of the head uses special X-ray equipment to help assess head injuries, dizziness and other...
Miami Cardiac and Vascular Institute Implements Philips Ingenia Ambition X 1.5T MRI
News | Magnetic Resonance Imaging (MRI) | May 17, 2019
Miami Cardiac & Vascular Institute announced the implementation of Philips’ Ingenia Ambition X 1.5T MR, the world’s...
New Phase 2B Trial Exploring Target-Specific Myocardial Ischemia Imaging Agent
News | Radiopharmaceuticals and Tracers | May 17, 2019
Biopharmaceutical company CellPoint plans to begin patient recruitment for its Phase 2b cardiovascular imaging study in...
Managing Architectural Distortion on Mammography Based on MR Enhancement
News | Mammography | May 15, 2019
High negative predictive values (NPV) in mammography architectural distortion (AD) without ultrasonographic (US)...