News | January 13, 2015

Novel Imaging Technique Improves Prostate Cancer Detection

More accurate diagnoses could mean less invasive interventions, more surveillance

Prostate cancer, MRI, restriction spectrum imaging, RSI-MRI, novel, detection

January 13, 2015 — A new novel imaging technique measurably improves upon current prostate imaging and may have significant implications for future treatment of prostate cancer patients, according to a report in the Jan. 6, 2015, issue of the journal Prostate Cancer and Prostatic Disease. The report comes courtesy of a team of scientists and physicians at the University of California, San Diego School of Medicine, with counterparts at the University of California, Los Angeles. 

“This new approach is a more reliable imaging technique for localizing tumors. It provides a better target for biopsies, especially for smaller tumors,” said Rebecca Rakow-Penner, M.D., Ph.D., a research resident in the department of radiology and the study’s first author.

The technique is also valuable in surgical planning and image staging, said David S. Karow, M.D., Ph.D., assistant professor of radiology at UC San Diego and the study’s corresponding author. “Doctors at UC San Diego and UCLA now have a non-invasive imaging method to more accurately assess the local extent of the tumor and possibly predict the grade of the tumor, which can help them more precisely and effectively determine appropriate treatment.”

In 2014, prostate cancer was the leading cause of newly diagnosed cancers in men and the second leading cause of cancer death in men.

The current standard of care for detecting and diagnosing prostate cancer is contrast-enhanced magnetic resonance imaging (MRI), which involves intravenously injecting patients with a contrast agent to highlight blood flow. Greater blood flow is often a requirement of growing cancer cells. When compared to surrounding healthy tissues, it’s hoped that contrast-enhanced MRIs will reveal the shape and nature of any tumors present.

But many tumors do not significantly differ from surrounding healthy tissues with contrast-enhanced MRI and so evade easy detection. An imaging technique called diffusion MRI measures the diffusion of water and has been a standard imaging technique in the brain and an emerging technique in the prostate. Cancer tissues are denser than healthy tissues and typically limit the amount and mobility of water within them. But diffusion MRI suffers from magnetic field artifacts that can distort the actual location of tumors by as much as 1.2 centimeters or roughly half an inch – a significant distance when surgeons are attempting, for example, to assess whether a tumor extends beyond the prostate and into adjacent nerve bundles.

The new approach described in today’s published paper is called restriction spectrum imaging-MRI or RSI-MRI. It corrects for magnetic field distortions and focuses upon water diffusion within tumor cells. By doing both, the ability of imaging to accurately plot a tumor’s location is increased and there is a more refined sense of the tumor’s extent, said Nathan White, Ph.D., assistant project scientist at UC San Diego, study co-author and co-inventor of the RSI-MRI technique.

In a related paper to be published in the journal Frontiers in Oncology, the same team of researchers reported that RSI-MRI appears to predict tumor grade. Higher-grade tumors correlate with higher restricted water volume in the cancer cells’ large nuclei.

“Prostate cancer can often be an indolent disease, where a patient may only require surveillance rather than aggressive surgery,” noted co-author Christopher J. Kane, M.D., professor of urology at UC San Diego.

“If by imaging we could predict the tumor grade,” added Robert Reiter, M.D., professor of urology at UCLA, “we may be able to spare some patients from prostate resection and monitor their cancer with imaging.”

For more information: www.healthsciences.ucsd.edu

Related Content

RSNA Study Shows Real-Time Indicator Improves Mammographic Compression
News | Mammography | December 12, 2018
Sigmascreening recently announced that more than 100,000 women have had mammography exams with the Sensitive Sigma...
Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

News | Neuro Imaging | December 07, 2018
Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football...
Siemens Healthineers Debuts Magnetom Altea 1.5T MRI Scanner
Technology | Magnetic Resonance Imaging (MRI) | December 06, 2018
During the 104th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA), Nov. 25-30...
GE Healthcare Unveils New Applications and Smart Devices Built on Edison Platform
Technology | Artificial Intelligence | December 05, 2018
GE Healthcare recently announced new applications and smart devices built on Edison – a platform that helps accelerate...
Snoring Poses Greater Cardiac Risk to Women
News | Women's Health | November 29, 2018
Obstructive sleep apnea (OSA) and snoring may lead to earlier impairment of cardiac function in women than in men,...
Vital Showcases Enterprise Imaging Advances at RSNA 2018

Global Illumination from Vital Images

News | Enterprise Imaging | November 28, 2018
Vital, a Canon Group company, will highlight the latest additions to its enterprise imaging portfolio at the 2018...
Artificial Intelligence May Help Reduce Gadolinium Dose in MRI

Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose. Image courtesy of Enhao Gong, Ph.D.

News | Contrast Media | November 27, 2018
Researchers are using artificial intelligence (AI) to reduce the dose of a contrast agent that may be left behind in...
Women Benefit From Mammography Screening Beyond Age 75
News | Mammography | November 26, 2018
Women age 75 years and older should continue to get screening mammograms because of the comparatively high incidence of...
Arterys Demonstrates AI Cloud-Based Medical Image Analysis Solutions at RSNA 2018
News | Computer-Aided Detection Software | November 26, 2018
Medical imaging software company Arterys will demonstrate its wide-ranging suite of artificial intelligence (AI)-...