Clinical Study Bird Flu Radiology

New Study Describes Imaging Findings in H7N9 Influenza


July 8, 2013 — H7N9 pneumonia is characterized by imaging findings that differentiate it from other types of pneumonia, including rapidly progressive changes in the lungs and pulmonary connective tissues, according to the first clinical study to describe radiologic findings in the disease. The results are published online in the journal Radiology.

“The severity of these findings is associated with the severity of the clinical condition of the patients,” said study co-author Zhiyong Zhang, M.D., Ph.D., from the Department of Radiology at Shanghai Public Health Clinical Center and Shanghai Medical College of Fudan University in China.

H7N9 is a recently discovered subtype of avian influenza virus or “bird flu.” Cases of bird flu infection in humans typically result from direct or close contact with infected poultry, such as domesticated chickens, pigeons or ducks, or with surfaces contaminated with secretions and excretions from infected birds. The first human outbreak of H7N9 was reported in China in March 2013. This new strain in humans has caused severe and rapidly progressing respiratory illness. H7N9 can cause acute respiratory distress syndrome, organ failure and death.

For the study, Zhang and colleagues evaluated the clinical data and radiologic files of 12 patients with avian-origin influenza A H7N9 virus who were admitted to Shanghai Public Health Clinical Center between April 3, 2013, and April 20, 2013. The 12 patients included nine men and three women, 47 to 81 years old (mean age, 66 years).

None of the patients raised pigeons or lived in or near a pigeon-infested area. One patient kept chickens at home, and four patients had gone to various farmers’ markets before the symptom onset. All other patients had no clear history of exposure to poultry. All patients exhibited fever with temperature of 38? to 40? (100.4? to 104?), cough, shortness of breath, and white phlegm and loss of strength at the onset of the disease or within one week. They rapidly progressed to severe pneumonia and acute respiratory distress syndrome.

The intervals between the onset of symptoms and the initial imaging examinations ranged from one to six days for chest X-rays and two to nine days for computed tomography (CT).

Chest X-rays were taken every one or two days thereafter to monitor disease progression and treatment response. To evaluate disease progression and possible complications, 10 of the patients underwent follow-up CT two to eight days after initial examination.

The imaging findings included ground-glass opacity (a hazy area in the lungs with the appearance of ground glass) in all 12 patients, consolidations (regions of lung tissue filled with liquid) in 11 patients, air bronchograms (air-filled bronchi made visible by swelling in adjacent tissues) in 11 patients, and interlobular septal thickening (thickening of pulmonary connective tissue) in 11 patients. Lung lesions involved three or more lobes in all cases, but were mostly detected in right lower lobe. Follow-up computed tomography (CT) in 10 patients showed interval improvement of the lesions in three patients and worsening of the lesions in seven patients. Imaging findings closely mirrored the overall clinical severity of the disease.

“The distribution and very rapid progression of consolidations, ground-glass opacity, and air bronchograms, with interstitial changes, in H7N9 pneumonia help differentiate it from other causes of pneumonia,” Zhang said.

While these imaging characteristics are similar to those found in other respiratory diseases, such as H1N1, H5N1 and severe acute respiratory syndrome (SARS), there are differences.

“Both H1N1 pneumonia and SARS distribute more peripherally, with more changes in the spaces between tissues, and progress less rapidly than H7N9,” Zhang said. “In our study, the right lower lung was most likely to be involved, while there’s no lobar predilection in findings of H5N1 influenza.”

For more information: www.radiologyInfo.org

 


Related Content

News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | Radiopharmaceuticals and Tracers

July 24, 2024 — Telix Pharmaceuticals Limited announced that the United States (U.S.) Food and Drug Administration (FDA) ...

Time July 24, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 22, 2024 — Healthcare artificial intelligence (AI) systems provider, Qure.ai, has announced its receipt of a Class ...

Time July 22, 2024
arrow
News | PET-CT

July 16, 2024 — A new research paper was published in Oncotarget's Volume 15 on June 20, 2024, titled, “Comparison of ...

Time July 16, 2024
arrow
Videos | Radiology Business

Find actionable insights to achieve sustainability and savings in radiology in this newest of ITN’s “One on One” video ...

Time July 12, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
News | Pediatric Imaging

June 25, 2024 — Rady Children’s Hospital-San Diego, one of the nation’s top pediatric health care systems, today ...

Time June 25, 2024
arrow
News | Artificial Intelligence

June 18, 2024 — The advancement of Artificial Intelligence (AI) in healthcare to support diagnostic decision making ...

Time June 18, 2024
arrow
News | Artificial Intelligence

June 11, 2024 — A new study led by researchers at Emory AI.Health, published in the Journal of Computers in Medicine and ...

Time June 11, 2024
arrow
Subscribe Now