News | February 07, 2011

MRI Software Visualizes Interior Structures in Motion

February 8, 2011 – Researchers at the University of Southern California have developed an algorithm to produce animated magnetic resonance imaging (MRI) scans of body parts or organs in motion. Volume scans of human bodies have a variety of uses in medical diagnosis and research; however, these scans usually do not show the body in movement.

The new algorithm can reconstruct an animated representation of any area of the body. Skeletal joints of the reconstructed representation can be moved with a 3-D animation program and the soft tissues deform interactively and realistically according to the MRI scan data. The preliminary application is for orthopedic evaluation, but the software could also be applied for organ movement, such as the heart or lungs.

The underlying approach is an intelligent example-based interpolation technique called volume blend deformation. The challenge in applying this technique is accurate registration of scans in different poses. This required the development of a new hierarchical skeleton-guided registration step. Although the registration requires many hours of pre-computation, the final result can be animated interactively.

The new algorithm will be particularly valuable in visualizing problems related to movement, since it visualizes the internal structures in motion. Applications include medical research and education, investigation of sports injuries, patient education and others. Applications in ergonomics are also possible, since the system can capture the position of skin that is occluded due to grasping or other contact.

The work was done in conjunction with Samsung Advanced Institute of Technology and researchers from Weta Digital and Victoria University in Wellington, New Zealand. It will be published in the March 2011 issue of the journal IEEE Transactions on Visualization and Computer Graphics (Taehyun Rhee, J.P. Lewis, Ulrich Neumann and Krishna Nayak, “Scan-Based Volume Animation Driven by Locally Adaptive Articulated Registrations.” IEEE Transactions on Visualization and Computer Graphics, March 2011, 17, 3, pp. 368—379.)

For more information: www.ncbi.nlm.nih.gov/pubmed/21233517, http://scribblethink.org/Work/VisibleHuman/index.html

Related Content

Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
News | Advanced Visualization | November 13, 2018
Canon Medical Systems USA and Applied Radiology will host a pair of expert-led forums in high-resolution imaging and...
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for radiation therapy displayed for the first time since gaining FDA clearance in 2018. It was displayed at the American Society for Radiotherapy and Oncology (ASTRO) 2018 annual meeting. Read more about this system at ASTRO 2018. #ASTRO18 #ASTRO2018
360 Photos | 360 View Photos | November 07, 2018
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for...
Deaconess Health System Chooses Sectra as Enterprise Imaging Vendor
News | Enterprise Imaging | November 02, 2018
International medical imaging information technology (IT) and cybersecurity company Sectra will install its enterprise...
Fans of Opposing Soccer Teams Perceive Games Differently

Image courtesy of University of York

News | Neuro Imaging | October 25, 2018
Scientists have scanned the brains of die-hard soccer fans to find out why supporters of rival teams often have very...
IMRIS, Siemens Strengthen Collaboration in Hybrid OR Neurosurgical Market
News | Hybrid OR | October 24, 2018
IMRIS, Deerfield Imaging, in partnership with Siemens Healthineers, announced a strengthened collaboration to advance...
The OnSight 3D Extremity System captures weight-bearing 3D extremity exams.
Sponsored Content | Whitepapers | Advanced Visualization | October 24, 2018
The OnSight 3D Extremity System captures weight-bearing 3D extremity exams.
Carotid Artery MRI Improves Cardiovascular Disease Risk Assessment
News | Magnetic Resonance Imaging (MRI) | October 23, 2018
Magnetic resonance imaging (MRI) measurements of wall thickness in the carotid arteries improve cardiovascular disease...
The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

Feature | ASTRO | October 20, 2018 | By Greg Freiherr
A linear accelerator combined with high-field MRI could soon be on the U.S. market. If U.S.