February 8, 2011 – Researchers at the University of Southern California have developed an algorithm to produce animated magnetic resonance imaging (MRI) scans of body parts or organs in motion. Volume scans of human bodies have a variety of uses in medical diagnosis and research; however, these scans usually do not show the body in movement.

The new algorithm can reconstruct an animated representation of any area of the body. Skeletal joints of the reconstructed representation can be moved with a 3-D animation program and the soft tissues deform interactively and realistically according to the MRI scan data. The preliminary application is for orthopedic evaluation, but the software could also be applied for organ movement, such as the heart or lungs.

The underlying approach is an intelligent example-based interpolation technique called volume blend deformation. The challenge in applying this technique is accurate registration of scans in different poses. This required the development of a new hierarchical skeleton-guided registration step. Although the registration requires many hours of pre-computation, the final result can be animated interactively.

The new algorithm will be particularly valuable in visualizing problems related to movement, since it visualizes the internal structures in motion. Applications include medical research and education, investigation of sports injuries, patient education and others. Applications in ergonomics are also possible, since the system can capture the position of skin that is occluded due to grasping or other contact.

The work was done in conjunction with Samsung Advanced Institute of Technology and researchers from Weta Digital and Victoria University in Wellington, New Zealand. It will be published in the March 2011 issue of the journal IEEE Transactions on Visualization and Computer Graphics (Taehyun Rhee, J.P. Lewis, Ulrich Neumann and Krishna Nayak, “Scan-Based Volume Animation Driven by Locally Adaptive Articulated Registrations.” IEEE Transactions on Visualization and Computer Graphics, March 2011, 17, 3, pp. 368—379.)

For more information: www.ncbi.nlm.nih.gov/pubmed/21233517, http://scribblethink.org/Work/VisibleHuman/index.html


Related Content

News | Advanced Visualization

Nov. 20, 2025 — Avatar Medical and Barco have launched Eonis Vision, marking a new evolution in how medical imaging is ...

Time November 20, 2025
arrow
News | Neuro Imaging

Nov. 19, 2025 — Royal Philips has announced an extended partnership with Cortechs.ai. Together, the companies will ...

Time November 19, 2025
arrow
Feature | Teleradiology | Kyle Hardner

Once viewed as a solution for after-hours coverage, teleradiology is rapidly expanding into a critical part of radiology ...

Time November 06, 2025
arrow
News | Radiology Imaging | UC San Diego Health

Oct. 16, 2025 — A strategic collaboration between UC San Diego Health and GE HealthCare will focus on bringing advanced ...

Time October 20, 2025
arrow
News | Computed Tomography (CT)

Sept. 26, 2025 — At the American Society for Radiation Oncology (ASTRO) 2025 annual meeting in San Francisco, Calif ...

Time September 29, 2025
arrow
News | Computed Tomography (CT)

Aug. 26, 2025— Esaote North America, Inc., a provider of dedicated MRI, Ultrasound, and Healthcare IT solutions, has ...

Time August 27, 2025
arrow
News | RSNA 2025

Aug. 13, 2025 — Registration is now open for the RSNA 111th Scientific Assembly and Annual Meeting, the world’s leading ...

Time August 13, 2025
arrow
News | Radiology Imaging

Aug. 12, 2025 – Medical imaging methods such as ultrasound and MRI are often affected by background noise, which can ...

Time August 12, 2025
arrow
News | Artificial Intelligence

July 22, 2025 — GE HealthCare has topped a U.S. Food and Drug Administration (FDA) list of AI-enabled medical device ...

Time July 23, 2025
arrow
News | Prostate Cancer

July 16, 2025 — Artificial intelligence can improve diagnostic consistency and reduce false-positives in prostate cancer ...

Time July 22, 2025
arrow
Subscribe Now