News | Artificial Intelligence | March 15, 2018

Median Technologies and the Nice University Hospital to Use AI in Lung Cancer Screening

The collaboration will use Deep Learning techniques to establish medical imaging biomarkers for more accurate diagnosis

 

Median Technologies and the Nice University Hospital to Use AI in Lung Cancer Screening

March 15, 2018 – Median Technologies, the industry-leading Imaging Phenomics Company and the Nice University Hospital (CHU de Nice) today announced a collaborative agreement that uses Artificial Intelligence to identify medical imaging biomarkers for lung cancer screening. These efforts will enable more accurate diagnosis and provide physicians with new therapeutic decision-making tools, based on medical imaging.

As part of the collaboration, medical imaging data from the AIR study - a French, multicenter cohort study, led by the Nice Hospital that has enrolled, to-date, more than 600 high-risk patients (smokers or former smokers with Chronic Obstructive Pulmonary Disease [COPD]) screened for lung cancer - will be analyzed to identify and characterize pulmonary nodules visible in thoracic CT scans. By using Deep Learning methods, a discipline of Artificial Intelligence, Median will develop new algorithms to identify imaging biomarkers that indicate pulmonary nodule malignity.

While current CT scan performance enables more pulmonary abnormalities to be identified, post-treatment image applications do not allow for an automatic, accurate characterization of the malignity or benignity of these pulmonary abnormalities. Lung nodule biopsies, which are invasive, are needed to confirm a diagnosis - potentially leading to complications for patients. By using medical imaging biomarkers, clinicians can reduce unnecessary biopsies and more accurately diagnose patients.

"Early detection of lung cancer is of paramount importance if we want to lessen mortality of this disease", says Professor Charles Marquette, coordinator of clinical teams in the AIR study. "The rationale for screening is based on the tight relationship between outcome and extent of the disease at time of diagnosis. However, large-scale screening of unselected population with chest computed tomography (CT) is expensive and has a high harm to benefit ratio, which explains why many health agencies are reluctant to implement screening of lung cancer with chest CT alone. We are developing a multimodal approach to lung cancer screening, including refinement of screening criteria (e.g. focus on COPD), non-invasive biomarkers and use of Artificial Intelligence to better characterize chest CT findings.”

"Today, many pulmonary biopsies are performed unnecessarily; Artificial Intelligence is going to make imaging, which represents non-invasive and less expensive procedures, an improved therapeutic decision-making tool. With Artificial Intelligence, imaging will help to identify patients who really need a biopsy and will contribute to advance clinical practice," said Peter Bannister, Chief Technology Officer at Median Technologies.

Related Content

Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
LVivo EF Cardiac Tool Now Available for GE Vscan Extend Handheld Mobile Ultrasound
Technology | Cardiovascular Ultrasound | September 19, 2018
DiA Imaging Analysis Ltd. (DiA), a provider of artificial intelligence (AI)-powered ultrasound analysis tools,...
Exact Imaging Partners to Improve Prostate Cancer Detection With Artificial Intelligence
News | Prostate Cancer | September 19, 2018
Exact Imaging, makers of the ExactVu micro-ultrasound platform, has partnered with U.K.-based Cambridge Consultants to...
SimonMed Deploys ClearRead CT Enterprise Wide
News | Computer-Aided Detection Software | September 17, 2018
September 17, 2018 — National outpatient physician radiology group SimonMed Imaging has selected Riverain Technologie
Siemens Healthineers Announces First U.S. Install of Somatom go.Top CT
News | Computed Tomography (CT) | September 17, 2018
September 17, 2018 — The Ohio State University Wexner Medical Center in Columbus recently became the first healthcare
SmartCurve technology, a revolutionary breast imaging technology designed specifically for the curvature of the female breast to provide every woman with a more comfortable and accurate mammogram.
News | Mammography | September 14, 2018
Solis Mammography declared September Breast Wellness Month a
At RSNA 2018, radiology professionals will discover intelligent radiography powered by MUSICA, at Agfa's booth.

At RSNA 2018, radiology professionals will discover intelligent radiography powered by MUSICA, at Agfa's booth.

News | Digital Radiography (DR) | September 13, 2018
At RSNA 2018, radiology professionals will discover intelligent
Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

News | Contrast Media | September 12, 2018
In February 2018, a workshop was held at the National Institutes of Health (NIH) in Bethesda, Maryland, to explore co
Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.