Technology | Magnetic Resonance Imaging (MRI) | October 12, 2016

FDA Clears Icometrix' Image Quantification Software to Monitor Neurological Disorders

Software quantifies key features of MRI brain scans to help monitor brain changes over time

icometrix, icobrain, MRI brain scans, longitudinal measurements, RSNA 2016, FDA clearance

October 12, 2016 — The health tech company Icometrix obtained 510(k) clearance in September from the U.S. Food and Drug Administration (FDA) for their image quantification software, icobrain. The software quantifies key features of clinical magnetic resonance imaging (MRI) brain scans, which enable clinicians to monitor how their patient's brain changes over time.

As the only software currently available that has been scientifically validated and clinically approved for longitudinal measurements, according to the company, icobrain offers clinicians unrivalled access to unique information about disease progression and the effect of treatment upon brain structure.

"MRI biomarkers are becoming of vital importance in the clinical care path for various pathologies, including neurological disorders such as multiple sclerosis, traumatic brain injury and stroke. It is of paramount importance that the biomarker measurements are extremely reproducible and sensitive enough to detect relevant clinical changes", said Max Wintermark, M.D., professor of radiology and chief of neuroradiology at the Stanford University Medical Center. "The icometrix methods have been published in several scientific journals and validated by top centers worldwide, demonstrating the accuracy that is needed to translate measures from a research setting to routine clinical practice," Wintermark added.

Icometrix' analysis services help radiologists and physicians worldwide to improve and personalize the care of patients with a neurological disorder, such as multiple sclerosis, traumatic brain injury or dementia. Accessing the U.S. market is an important step and will lead to more evidence-based medicine by bringing automated MRI reports into clinical practice.

For more information: www.icometrix.com

Related Content

An illustration based on simulations by Rice University engineers shows a gadolinium ion (blue) in water (red and white), with inner-sphere water -- the water most affected by the gadolinium -- highlighted. The researchers’ models of gadolinium in water show there’s room for improvement in compounds used as contrast agents in clinical magnetic resonance imaging.

An illustration based on simulations by Rice University engineers shows a gadolinium ion (blue) in water (red and white), with inner-sphere water -- the water most affected by the gadolinium -- highlighted. The researchers’ models of gadolinium in water show there’s room for improvement in compounds used as contrast agents in clinical magnetic resonance imaging. Illustration by Arjun Valiya Parambathu

News | Magnetic Resonance Imaging (MRI) | September 20, 2021
September 20, 2021 — ...
Avoiding contrast dyes for imaging tests not necessary if concerned about iodine allergy, peer-reviewed study concludes #MRI

Getty Images

News | Contrast Media Injectors | September 16, 2021
September 16, 2021 — FDB (First Databank), a leading provider of drug and medical device knowledge that helps healthc
Revised guidelines for lung cancer screening eligibility are perpetuating disparities for racial/ethnic minorities, according to a new study in Radiology.

Getty Images

News | Lung Imaging | September 15, 2021
September 15, 2021 — Revised guidelines for...
To get more flexibility and cost savings from storage, healthcare organizations are increasing their investments in the cloud
Feature | Information Technology | September 15, 2021 | By Kumar Goswami
Healthcare organizations today are storing petabytes of medical imaging data — lab slides,...
Figure 1: MWT Schematic of a typical setup for detecting malignant tissues/tumors.

Figure 1: MWT Schematic of a typical setup for detecting malignant tissues/tumors.

Feature | Radiology Imaging | September 14, 2021 | By Brendon McHugh
As with all imaging technologies, COVID-19 is expected to continue to negatively impact the market.

Courtesy of Grand View Research

Feature | Magnetic Resonance Imaging (MRI) | September 14, 2021 | By Melinda Taschetta-Millane
Plan to attend RSNA21 at McCormick Place Chicago, Nov. 28 – Dec. 2, 2021

Getty Images

News | RSNA | September 13, 2021
September 13, 2021 — The Radiological Society of North America (RSNA) today announced highlights of the Technical Exh
New recommendations will help provide more reliable, reproducible results for MRI-based measurements of cartilage degeneration in the knee, helping to slow down disease and prevent progression to irreversible osteoarthritis, according to a special report published in the journal Radiology

Knee cartilage compartments with anatomic labels implemented in lateral (left side), central (middle), and medial (right side) MRI obtained with an intermediate weighted fat-saturated fast-spin-echo sequence (top row) and a spin-lattice relaxation time constant in rotating frame (T1r) magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots sequence (bottom row, T1r maps). Study was performed without administration of intravenous gadolinium-based contrast material. The lateral femur (LF)/medial femur (MF) and lateral tibia (LT)/medial tibia (MT) can be further divided into subcompartments on the basis of meniscus anatomy according to Eckstein et al. P = patella, T = trochlea.  Chalian et al, Radiology 2021 301; 7 ©RSNA 2021

News | Magnetic Resonance Imaging (MRI) | September 10, 2021
September 10, 2021 — New recommendations will help provide more reliable, reproducible results for...
Neuroscientists at the Beckman Institute for Advanced Science and Technology carried out comparative studies to determine safe operating conditions for multiband EEG-fMRI imaging while maintaining acceptable data quality standards

A team of psychologists and neuroscientists at the Beckman Institute for Advanced Science and Technology including Sepideh Sadaghiani, Maximillian Egan, Ryan Larsen, and Brad Sutton published a study to establish safe use of electroencephalography coupled with newly developed functional MRI sequences. Image courtesy of the Beckman Institute for Advanced Science and Technology.

News | Magnetic Resonance Imaging (MRI) | September 07, 2021
September 7, 2021 — A team of psychologists and neuroscientists at the Beckman Institute for Advanced Science and Tec