News | Breast Density | September 20, 2019

Densitas Wins Major Procurement of Breast Density Software for DIMASOS Breast Screening Trial

Densityai software will be deployed in up to 24 breast cancer screening clinics across Germany

Densitas Wins Major Procurement of Breast Density Software for DIMASOS Breast Screening Trial

September 20, 2019 — Densitas Inc. announced it has won a procurement of its densitas densityai software for deployment in up to 24 breast cancer screening clinics across Germany. These clinics will provide breast density measurements at point of care to identify women for supplemental breast cancer screening as part of the DIMASOS 2 Trial.

Prof. Sylvia H. Heywang-Köbrunner, M.D., head of Referenzzentrum Mammographie München, internationally recognized for her work in contrast-enhanced breast magnetic resonance imaging (MRI) and modern biopsy procedures, is using densitas densityai breast density measures to establish a supplemental ultrasound screening protocol in the DIMASOS 2 trial.

“Women with dense breasts are subject to the masking effect of mammographic density and its association with breast cancer risk. The objective of the DIMASOS 2 trial is to test whether combined mammography/ultrasound exams can improve early cancer detection and if this can feasibly and cost effectively be done in routine screening workflow,” said Heywang-Köbrunner.  “The unique ability of the Densitas software to analyze prior ‘for presentation’ mammograms from a wide range of mammography scanner vendor models is pivotal to this trial and is important for any practical clinical deployment.”

Densitas densityai delivers fully automated, standardized and reproducible breast density assessments from standard DICOM clinical use mammograms. Results from densitas densityai are generated by two distinct algorithms that decouple the breast density assessment into quantitative and qualitative scales in alignment with the American College of Radiology (ACR) Breast Imaging-Reporting and Data System (BI-RADS) 4th and 5th edition density classification systems. These results can be incorporated into breast cancer risk models to provide standardized and reproducible patient-specific risk estimates.

The artificial intelligence (AI)-driven Densitas densityai processes the same clinical use images that radiologists examine, enabling seamless picture archiving and communication system (PACS)-centric integrations and retrospective auditing capabilities of routinely archived exams. 

For more information: www.densitas.health

Related Content

Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it is critical for overall treatment success and saving patients' lives. Diffusion-weighted magnetic resonance imaging (DWI) may be used to detect a malignancy in various tissues and organs. It has the advantage of providing insight into the diffusion of water molecules in body tissues without exposing patients to radiation.

DWI of the phantom with polyvinylpyrrolidone (PVP) solutions (b value 500 s/mm2). Image courtesy of Kristina Sergunova et al.

News | Magnetic Resonance Imaging (MRI) | June 02, 2020
June 2, 2020 — Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it
Developed by medical AI company Lunit, Software detects breast cancer with 97% accuracy; Study in Lancet Digital Health shows that Lunit INSIGHT MMG-aided radiologists showed an increase in sensitivity

Lunit INSIGHT MMG

News | Artificial Intelligence | June 02, 2020
June 2, 2020 — Lunit announced that its artificia...
AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
Largest case series (n=30) to date yields high frequency (77%) of negative chest CT findings among pediatric patients (10 months-18 years) with COVID-19, while also suggesting common findings in subset of children with positive CT findings

A and B, Unenhanced chest CT scans show minimal GGOs (right lower and left upper lobes) (arrows) and no consolidation. Only two lobes were affected, and CT findings were assigned CT severity score of 2. Image courtesy of American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | May 29, 2020
May 29, 2020 — An investigation published open-access in the ...
AI has the potential to help radiologists improve the efficiency and effectiveness of breast cancer imaging

Getty Images

Feature | Breast Imaging | May 28, 2020 | By January Lopez, M.D.
Headlines around the world the past several months declared that...
United Imaging's uMR OMEGA is designed to provide greater access to magnetic resonance imaging (MRI) with the world’s first ultra-wide 75-cm bore 3T MRI.
News | Magnetic Resonance Imaging (MRI) | May 27, 2020
May 27, 2020 — United Imaging's...
There were several new developments in digital radiography (DR) technology at the 2019 Radiological Society of North America (RSNA) annual meeting. These trends included integration of artificial intelligence (AI) auto detection technologies, more durable glassless detector plates, and technologies to pull more diagnostic data out of X-ray imaging. Some vendors also have redesigned their DR systems to make them more user-friendly and ergonomic. 
Feature | Digital Radiography (DR) | May 26, 2020 | By Dave Fornell
There were several new developments in digital rad...
An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019.

An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019. Photo by Dave Fornell.

News | Ultrasound Imaging | May 26, 2020
May 12, 2020 — DiA Imaging Analysis, a provider of AI based ultrasound analysis solutions, said it received a governm
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.