News | Coronavirus (COVID-19) | May 01, 2020

COVID-19: Pediatric Findings in New Review of Lung Disorders

Although there are some overlapping imaging features of these disorders, careful evaluation of the distribution, lung zone preference, and symmetry of the abnormalities — with an eye for a few unique differentiating findings, such as the halo sign seen in COVID-19—can allow radiologists to offer a narrower differential diagnosis in pediatric patients

16-year-old girl with coronavirus disease (COVID-19) and known history of tuberous sclerosis who presented with acute hypoxic respiratory distress. Reverse transcription–polymerase chain reaction testing confirmed diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

16-year-old girl with coronavirus disease (COVID-19) and known history of tuberous sclerosis who presented with acute hypoxic respiratory distress. Reverse transcription–polymerase chain reaction testing confirmed diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

A, Frontal chest radiograph obtained at initial presentation shows bilateral lower lung zone–predominant consolidations and, to lesser extent, ground-glass opacities. B, Frontal chest radiograph obtained 2 days after hospital admission shows interval increase in consolidation in bilateral lower lung zones. C, Frontal chest radiograph obtained 6 days after hospital admission and treatment shows interval improvement in consolidations in bilateral lower lung zones.

16-year-old girl with coronavirus disease (COVID-19) who presented with shortness of breath. Reverse transcription–polymerase chain reaction testing confirmed diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

16-year-old girl with coronavirus disease (COVID-19) who presented with shortness of breath. Reverse transcription–polymerase chain reaction testing confirmed diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

AD, Axial (A and B), coronal (C), and sagittal (D) lung window setting CT images show posterior subpleural ground-glass opacity with small component of consolidation within left lower lobe.

May 1, 2020 — Although the clinical symptoms of new pediatric lung disorders such as severe acute respiratory syndrome (SARS), swine-origin influenza A (H1N1), Middle East respiratory syndrome (MERS), e-cigarette or vaping product use–associated lung injury (EVALI), and coronavirus disease (COVID-19) pneumonia may be nonspecific, some characteristic imaging findings “have emerged or are currently emerging,” according to an open-access article in the American Journal of Roentgenology (AJR).

“Although there are some overlapping imaging features of these disorders,” wrote first author Alexandra M. Foust of Boston Children’s Hospital and Harvard Medical School, “careful evaluation of the distribution, lung zone preference, and symmetry of the abnormalities with an eye for a few unique differentiating imaging features, such as the halo sign seen in COVID-19 and subpleural sparing and the atoll sign seen in EVALI, can allow the radiologist to offer a narrower differential diagnosis in pediatric patients, leading to optimal patient care.”

At most institutions, whereas the first imaging study performed in patients with clinically suspected COVID-19 is chest radiography, Foust and colleagues’ review of the clinical literature found that studies on chest radiography findings in patients with COVID-19 were relatively scarce.

Regarding the limited studies of pediatric patients with COVID-19, Foust et al. noted chest radiography “may show normal findings; patchy bilateral ground-glass opacity (GGO), consolidation, or both; peripheral and lower lung zone predominance.”

Similarly, while the literature describing chest computed tomography (CT) findings in patients with COVID-19 are more robust than those describing chest radiography findings, only a few articles have reported CT findings of COVID-19 in children.

A study of 20 pediatric patients with COVID-19 reported that the most frequently observed abnormalities on CT were subpleural lesions (100% of patients), unilateral (30%) or bilateral (50%) pulmonary lesions, GGO (60%), and consolidation with a rim of GGO surrounding it, also known as the halo sign (50%).

The authors of this AJR article also pointed to a smaller study of five pediatric patients with COVID-19, where investigators reported modest patchy GGO, one with peripheral subpleural involvement, in three patients that resolved on follow-up CT examination.

For more information: www.arrs.org

Related Coronavirus Content:

VIDEO: Imaging COVID-19 With Point-of-Care Ultrasound (POCUS)

The Cardiac Implications of Novel Coronavirus

CT Provides Best Diagnosis for Novel Coronavirus (COVID-19)

Radiology Lessons for Coronavirus From the SARS and MERS Epidemics

Deployment of Health IT in China’s Fight Against the COVID-19 Epidemic

Emerging Technologies Proving Value in Chinese Coronavirus Fight

Radiologists Describe Coronavirus CT Imaging Features

Coronavirus Update from the FDA

CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia

CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV)

Chest CT Findings of Patients Infected With Novel Coronavirus 2019-nCoV Pneumonia 

Find more related clinical content Coronavirus (COVID-19)

ACC COVID-19 recommendations for the cardiovascular care team

VIDEO: What Cardiologists Need to Know about COVID-19 — Interview with Thomas Maddox, M.D.

The Cardiac Implications of Novel Coronavirus

ESC Council on Hypertension Says ACE-I and ARBs Do Not Increase COVID-19 Mortality

Related Content

3D aMRI not only provides a stunning look inside the "beating brain", but it can also measure this physiological motion in all directions. Here, the amplitude of brain motion is overlayed for each brain slice and orientation in 3D. Image credit: 3D aMRI method outlined in Abderezaei et al. Brain Multiphysics (2021); Terem et al. Magnetic Resonance in Medicine (2021).

3D aMRI not only provides a stunning look inside the "beating brain", but it can also measure this physiological motion in all directions. Here, the amplitude of brain motion is overlayed for each brain slice and orientation in 3D. Image credit: 3D aMRI method outlined in Abderezaei et al. Brain Multiphysics (2021); Terem et al. Magnetic Resonance in Medicine (2021).

News | Magnetic Resonance Imaging (MRI) | May 06, 2021
May 6, 2021 — Magnetic Resonance Imaging
Research finds that a commonly used risk-prediction model for lung cancer does not accurately identify high-risk Black patients who could benefit from early screening

Getty Images

News | Lung Imaging | May 05, 2021
May 5, 2021 — Lung cancer is the third most common cance
After radiosurgery concurrent with nivolumab in 59-year-old patient with melanoma BM (patient 1; Supplemental Tables 3 and 5), F-18 FET PET at follow-up 12 weeks after treatment initiation (bottom row) shows significant decrease of metabolic activity (TBRmean, ?28%) compared with baseline (top row), although MRI changes were consistent with progression according to iRANO criteria. Reduction of metabolic activity was associated with stable clinical course over 10 mo. CE = contrast-enhanced. Image created by

After radiosurgery concurrent with nivolumab in 59-year-old patient with melanoma BM (patient 1; Supplemental Tables 3 and 5), F-18 FET PET at follow-up 12 weeks after treatment initiation (bottom row) shows significant decrease of metabolic activity (TBRmean, ?28%) compared with baseline (top row), although MRI changes were consistent with progression according to iRANO criteria. Reduction of metabolic activity was associated with stable clinical course over 10 mo. CE = contrast-enhanced. Image created by N. Galldiks et al., Research Center Juelich, Juelich, Germany.

News | PET Imaging | May 05, 2021
May 5, 2021 — For patients with brain metastases, amino acid ...
When working with a vendor on project implementation, it is critical to focus on the actual execution of the implementation

Getty Images

Feature | Radiology Business | May 05, 2021 | By Jef Williams
You have selected a vendor. Congratulations.
Building the right infrastructure today will ensure the needed tools are there tomorrow, whatever the challenge may be

Getty Images

Feature | Radiology Business | May 05, 2021 | By Tom Cheesewrite in collaboration with Ludger Philippsen
The COVID-19 pandemic came as a shock, but not a
#DDR allows #clinicians to observe movement like never before. This enhanced version of a standard digital radiographic system can acquire up to 15 sequential #radiographs per second resulting in 20 seconds of motion and multiple individual #radiographic images. #DDR is not fluoroscopy; it is #cineradiography, or #Xray that moves.

DDR allows clinicians to observe movement like never before. This enhanced version of a standard digital radiographic system can acquire up to 15 sequential radiographs per second resulting in 20 seconds of motion and multiple individual radiographic images. DDR is not fluoroscopy; it is cineradiography, or X-ray that moves. The resulting images provide clinicians with a 4-D data set (a video) that depicts physiological movement. 

Sponsored Content | Case Study | Digital Radiography (DR) | May 05, 2021
Musculoskeletal injuries can be difficult to diagnose with a traditional X-ray because X-rays only reveal a static im