News | Coronavirus (COVID-19) | March 11, 2020

ACR Recommendations for the Use of Chest Radiography and CT for Suspected COVID-19 Cases

The American College of Radiology just released a statement on the role and appropriateness of chest radiographs (CXR) and computed tomography (CT) for the screening, diagnosis and management of patients with suspected or known COVID-19 infection

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus

Image courtesy of Getty Images

March 11, 2020 — As COVID-19 spreads in the U.S., there is growing interest in the role and appropriateness of chest radiographs (CXR) and computed tomography (CT) for the screening, diagnosis and management of patients with suspected or known COVID-19 infection. Contributing to this interest are limited availability of viral testing kits to date, concern for test sensitivity from earlier reports in China, and the growing number of publications describing the CXR and CT appearance in the setting of known or suspected COVID-infection.

To date, most of the radiologic data comes from China. Some studies suggest that chest CT in particular may be positive in the setting of a negative test. We want to emphasize that knowledge of this new condition is rapidly evolving, and not all of the published and publically available information is complete or up-to-date.

Key goals for the U.S. health care system in response to the COVID-19 outbreak are to reduce morbidity and mortality, minimize disease transmission, protect health care personnel, and preserve health care system functioning.

The ACR believes that the following factors should be considered regarding the use of imaging for suspected or known COVID-19 infection:

  • The Centers for Disease Control (CDC) does not currently recommend CXR or CT to diagnose COVID-19. Viral testing remains the only specific method of diagnosis. Confirmation with the viral test is required, even if radiologic findings are suggestive of COVID-19 on CXR or CT.
  • For the initial diagnostic testing for suspected COVID-19 infection, the CDC recommends collecting and testing specimens from the upper respiratory tract (nasopharyngeal AND oropharyngeal swabs) or from the lower respiratory tract when available for viral testing.
  • Generally, the findings on chest imaging in COVID-19 are not specific, and overlap with other infections, including influenza, H1N1, SARS and MERS. Being in the midst of the current flu season with a much higher prevalence of influenza in the U.S. than COVID-19, further limits the specificity of CT.

Additionally, there are issues related to infection control in health care facilities, including the use of imaging equipment:

  • Primary care and other medical providers are attempting to limit visits of patients with suspected influenza or COVID-19 to health care facilities, to minimize the risk of spreading infection. The CDC has also asked that patients and visitors to health care facilities be screened for symptoms of acute respiratory illness, be asked to wear a surgical mask and be evaluated in a private room with the door closed.
  • In addition to environmental cleaning and decontamination of rooms occupied by a patient with suspected or known COVID-19 infection by thorough cleaning of surfaces by someone wearing proper protective equipment, air-flow within fixed radiography or CT scanner rooms should be considered before imaging the next patient. Ventilation is an important consideration for the control of airborne transmission in health care facilities . Depending on the air exchange rates, rooms may need to be unavailable for approximately 1 hour after imaging infected patients; air circulation rooms can be tested.
  • These measures to eliminate contamination for subsequent patients may reduce access to imaging suites, leading potentially to substantial problems for patient care.

Based on these concerns, the ACR recommends:

  • CT should not be used to screen for or as a first-line test to diagnose COVID-19
  • CT should be used sparingly and reserved for hospitalized, symptomatic patients with specific clinical indications for CT. Appropriate infection control procedures should be followed before scanning subsequent patients.
  • Facilities may consider deploying portable radiography units in ambulatory care facilities for use when CXRs are considered medically necessary. The surfaces of these machines can be easily cleaned, avoiding the need to bring patients into radiography rooms.
  • Radiologists should familiarize themselves with the CT appearance of COVID-19 infection in order to be able to identify findings consistent with infection in patients imaged for other reasons.

For more information: www.acr.org

Recommended Resources:

Centers for Disease Control:

General information and situation updates 

Information for health care professionals 

World Health Organization (WHO) COVID-19 situation reports

World Health Organization (WHO) coronavirus information page

U.S. Food and Drug Administration (FDA) COVID-19 information page

Centers for Disease Control (CDC) COVID-19 information page

Related Coronavirus Content:

The Cardiac Implications of Novel Coronavirus

CT Provides Best Diagnosis for Novel Coronavirus (COVID-19)

Radiology Lessons for Coronavirus From the SARS and MERS Epidemics

Deployment of Health IT in China’s Fight Against the COVID-19 Epidemic

Emerging Technologies Proving Value in Chinese Coronavirus Fight

Radiologists Describe Coronavirus CT Imaging Features

Coronavirus Update from the FDA

CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia

CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV)

Chest CT Findings of Patients Infected With Novel Coronavirus 2019-nCoV Pneumonia 

Find more related clinical content Coronavirus (COVID-19)

Related Content

Detroit-based magnetic resonance imaging (MRI) technology company SpinTech, Inc. has acquired medical-imaging research and technology developer Magnetic Resonance Innovations, Inc. (MR Innovations).
News | Magnetic Resonance Imaging (MRI) | February 24, 2021
February 24, 2021 — Detroit-based magnetic resonance...
Findings indicate that PPC and GG are highly predictive of overall upstaging by PSMA PET/CT for patients with high-risk prostate cancer

Image courtesy of UCLA Health

News | PET-CT | February 23, 2021
February 23, 2021 — A...
icobrain cva allows the quantitative assessment of tissue perfusion by reporting the volume of core and perfusion lesion by quantifying Tmax abnormality and CBF abnormality together with the mismatch volume and ratio
News | Artificial Intelligence | February 23, 2021
February 23, 2021 — icometrix, world leader in imaging...
Dr Sahar Saleem placing the mummy in the CT scanner

Dr. Sahar Saleem placing the mummy in the CT scanner. Image courtesy of Sahar Saleem

News | Computed Tomography (CT) | February 22, 2021
February 22, 2021 — Modern medical technology is helping scholars tell a more nuanced story about the fate of an anci
Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in

Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in (a). The bottom row focuses on the detection of small calcifications, a key feature in DCIS. These are undetectable in (d), detected in (e), enhanced in the maximum intensity projection (MIP) image at the bottom of (f), and confirmed by histopathology in the top part of (f). The scale bar [shown in (b) and (e)] is the same for all images apart from (f), which has its own scale. Red arrows in (e) and (f) indicate the microcalcifications. Image courtesy of Professor Alessandro Olivo

News | Breast Imaging | February 22, 2021
February 22, 2021 — A new X-ray imaging scanne
Axial FLAIR MR image shows T2 prolongation in bilateral middle cerebellar peduncles (arrows). Findings were associated with restricted diffusion and areas of T1 hypointense signal without enhancement or abnormal susceptibility. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

Axial FLAIR MR image shows T2 prolongation in bilateral middle cerebellar peduncles (arrows). Findings were associated with restricted diffusion and areas of T1 hypointense signal without enhancement or abnormal susceptibility. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | February 22, 2021
February 22, 2021 — According to an...
 Enterprise imaging systems provider Intelerad Medical Systems announced it has acquired Lumedx, a leading provider of healthcare analytics and cardiovascular information systems (CVIS). 
News | Enterprise Imaging | February 18, 2021
February 18, 2021 – Enterprise imaging systems provider Intelerad Medical Systems announced it has acquired...
Example MR images from paediatric brain tumour patients. This first column shows T1-weighted images following the injection of gadolinium contrast agent. The second column shows T2-weighted images and the final column shows apparent diffusion coefficient maps calculated from diffusion-weighted images. (a–c) are taken from a patient with a Pilocytic Astrocytoma, (d–f) are from a patient with an Ependymoma and (g–i) were acquired from a patient with a Medulloblastoma.

Example MR images from paediatric brain tumour patients. This first column shows T1-weighted images following the injection of gadolinium contrast agent. The second column shows T2-weighted images and the final column shows apparent diffusion coefficient maps calculated from diffusion-weighted images. (ac) are taken from a patient with a Pilocytic Astrocytoma, (df) are from a patient with an Ependymoma and (gi) were acquired from a patient with a Medulloblastoma. Image courtesy of Nature Research Journal

News | Pediatric Imaging | February 17, 2021
February 17, 2021 — Diffusio...
T1 structural images for the two sequences, MPRAGE and MPRAGE+PMC. The top row shows the MPRAGE sequence, while the bottom row shows the images that were generated with the MPRAGE+PMC sequence. Columns represent two different participants, one with minimal head motion (left, Low-Mover) and another with a large quantity of motion (right, High-Mover). Pial and white matter (WM) surface reconstruction from Freesurfer are also shown.

T1 structural images for the two sequences, MPRAGE and MPRAGE+PMC. The top row shows the MPRAGE sequence, while the bottom row shows the images that were generated with the MPRAGE+PMC sequence. Columns represent two different participants, one with minimal head motion (left, Low-Mover) and another with a large quantity of motion (right, High-Mover). Pial and white matter (WM) surface reconstruction from Freesurfer are also shown.

News | Magnetic Resonance Imaging (MRI) | February 17, 2021
February 17, 2021 — A new paper,...