News | Focused Ultrasound Therapy | May 09, 2019

Clinical Trial Explores Opening Blood-Brain Barrier in Fight Against Alzheimer's

MRI-guided imaging helps team identify amyloid buildup that is then targeted with focused ultrasound

Clinical Trial Explores Opening Blood-Brain Barrier in Fight Against Alzheimer's

Vibhor Krishna, M.D., (right) fits David Shorr with a helmet-like device used in a new clinical trial for Alzheimer’s disease at The Ohio State University Wexner Medical Center. The device uses MRI-guided imaging to deliver focused ultrasound to specific areas of the brain to open the blood-brain barrier. Image courtesy of Ohio State University Wexner Medical Center.

May 9, 2019 — A new clinical trial at The Ohio State University Wexner Medical Center and two other sites is testing an innovative procedure that may provide hope in the fight against Alzheimer’s disease.

The non-invasive procedure uses low-intensity focused ultrasound to open the blood-brain barrier, a protective layer that shields the brain from infections or pathogens in the blood. However, this barrier also makes it nearly impossible to deliver therapeutics to the brain to treat neurodegenerative diseases such as Alzheimer’s.

“While it’s protective and beneficial for day-to-day brain function, when we think about therapeutics, the blood-brain barrier poses a significant challenge,” said Vibhor Krishna, M.D., a neurosurgeon at Ohio State Wexner Medical Center. “The focused ultrasound procedure allows us to non-invasively access the brain tissue so treatment can be administered straight to the site of pathology.”

During the surgery in an intraoperative magnetic resonance imaging (MRI)-surgical suite, patient David Shorr of Bexley, Ohio, was awake and alert, giving real-time feedback to the treatment team of neurosurgeon, neurologist, neuropsychologist, researchers and nurses.

MRI-guided imaging allows doctors to target a specific area of the brain where there is a buildup of toxic proteins called amyloid. A head frame holds the patient’s head still during the treatment. The ultrasound transducer — essentially a helmet housing the ultrasound beams — is attached to the head frame. Surrounding the patient’s head is a water bath where cold, degassed water is circulated. This setup helps transmission of 1,000 focused ultrasound beams from the machine through intact skull, all converging  at the exact brain tissue that is being targeted.

During the procedure, the patient’s bloodstream is infused with microbubbles. The focused ultrasound waves are delivered through the helmet-like device, which causes microbubbles in the blood to oscillate and open the blood-brain barrier.

“In this research study, we are not delivering any medications. Our hypothesis is that, by opening the blood brain barrier, a patient’s own immune defense may clear some of those harmful amyloids,”  Krishna said. “If we determine this to be safe, in the next steps we would want to understand the effectiveness and the impact of opening the blood-brain barrier in improving cognitive decline.”

The procedure is performed three times at two-week intervals to allow for as much amyloid clearance as possible. In the future, this method of opening the blood-brain barrier may also be applicable in developing new treatments for brain tumors and epilepsy.

“With 5.8 million Americans living with Alzheimer’s, there’s a critical need to develop novel therapies to treat this devastating disease. With this innovative clinical trial, Ohio State researchers are pioneering potential new treatments,” said K. Craig Kent, M.D., dean of the Ohio State University College of Medicine.

The research team at Ohio State’s Center for Neuromodulation will monitor the patients closely, using neurological exams and neuro-psychological exams to assess language, memory and executive functioning at various intervals for one year following the surgery.

The clinical trial, sponsored by Insightec, will enroll up to 10 patients at Ohio State Wexner Medical Center, Weill Cornell Medicine and West Virginia University Rockefeller Neuroscience Center.

“We’re hopeful it can help him, but we also know maybe it will help somebody else,” said Shorr’s wife, Kim.

For more information: www.wexnermedical.osu.edu

Related Content

Advanced imaging data exchange is now live in Colorado due to the partnership of Health Images and the Colorado Regional Health Information Organization

Getty Images

News | Radiology Business | May 18, 2020
May 18, 2020 — 
Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol.

Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol. (A) Experimental timeline. (B) Representative T2WI (using an 11.7T MRI) of the brain of a postnatal day (PND) 11 pup, 1 day after inducing left HII and prior to hNSC transplantation. Note the beginning of an increasingly intense “water signal” (white) on the left (“HII lesion”). (C) Representative T2WI (using an 11.7T MRI) 3 days post-HII, shortly after implantation of SPIO pre-labeled hNSCs into the contralateral cerebral ventricle (“Lateral Vent”). Note the “HII lesion” on the left becoming hyperintense (white) and the black signal void of the SPIO-labeled hNSCs in the lateral ventricle (black arrow). Red arrows denote the needle track. In contrast to what occurs in the intact brain (Figure S4), in a brain subjected to left HII, the implanted SPIO-labeled hNSCs (black signal void) (black arrow) migrate from the right (“R”) to the left (“L”) hemisphere to enter the lesion. (D and E) Shown here (using a 4.7T MRI) are SPIO-labeled hNSCs (black signal void) (black arrow) at 1 month post-implantation into the contralateral ventricle (D) and, in the same representative animal, at 3 months post-implantation (E)–stably integrated and surrounding a much-reduced residual lesion, with no interval enlargement of the graft or ventricles.

News | Magnetic Resonance Imaging (MRI) | May 13, 2020
May 13, 2020 — Scientists at Sanford Burnham Prebys Medical Discov...
Axial (A) and coronal (B) CT of the abdomen and pelvis with IV contrast in a 57-year-old man with a high clinical suspicion for bowel ischemia. There was generalized small bowel distension and segmental thickening (arrows), with adjacent mesenteric congestion (thin arrow in B), and a small volume of ascites (* in B). Findings are nonspecific but suggestive of early ischemia or infection.

Axial (A) and coronal (B) CT of the abdomen and pelvis with IV contrast in a 57-year-old man with a high clinical suspicion for bowel ischemia. There was generalized small bowel distension and segmental thickening (arrows), with adjacent mesenteric congestion (thin arrow in B), and a small volume of ascites (* in B). Findings are nonspecific but suggestive of early ischemia or infection. Image courtesy of RSNA

News | Coronavirus (COVID-19) | May 11, 2020
May 11, 2020 — Patients with COVID-19 can have b
Richard J. Price, Ph.D., of the University of Virginia's School of Medicine and School of Engineering, is using focused soundwaves to overcome the natural 'blood-brain barrier,' which protects the brain from harmful pathogens. Photo courtesy of Dan Addison | UVA Communications

Richard J. Price, Ph.D., of the University of Virginia's School of Medicine and School of Engineering, is using focused soundwaves to overcome the natural 'blood-brain barrier,' which protects the brain from harmful pathogens. Photo courtesy of Dan Addison | UVA Communications

News | Focused Ultrasound Therapy | May 07, 2020
May 7, 2020 — University of Virginia researchers are pioneering the use of...
Whole body diffusion-weighted magnetic resonance imaging (DW MRI) may aid in the assessment of cancer treatment response in children and youth at much lower levels of radiation than current approaches, suggests a small study funded by the National Institutes of Health.
News | Pediatric Imaging | May 05, 2020
May 5, 2020 — Whole body diffusion-weighted magnetic resonance imaging (DW MRI) may aid in the assessment of...
Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch.

Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch (arrowhead). Retrospectively, denoted lesion could also be found at CT coronary angiography and coronary angiography (arrowheads in b and c, respectively). CT FFR = CT-derived fractional flow reserve, LGE = late gadolinium enhancement. Image courtesy of RSNA, Radiology.

News | Cardiac Imaging | May 04, 2020
May 4, 2020 – A new technique that combines computed tomography (CT) and magnetic resonance imaging MRI can bolster c
Two people together in an MRI Scanner along with the accompanying image of their brains

Two people together in an MRI Scanner along with the accompanying image of their brains. Image courtesy of Ville Renvall/ Aalto University

News | Magnetic Resonance Imaging (MRI) | April 30, 2020
April 30, 2020 — Researchers at Aalto University and...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Getty Images

News | Coronavirus (COVID-19) | April 24, 2020
April 24, 2020 — The Food and Drug Administration (FDA or the Agency) plays a critic
#gadolinium Guerbet announced that it received U.S. Food and Drug Administration (FDA) approval to manufacture Dotarem (gadoterate meglumine) injection at its Raleigh, N.C., facility
News | Interventional Radiology | April 21, 2020
April 21, 2020 — Guerbet announced that it received U.S.