Sponsored Content | Case Study | Radiation Dose Management | September 07, 2018

The Challenge of Pediatric Radiation Dose Management

Diagnosing an adult is different than a child and there is increased concern about radiation exposure

The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

Diagnostic CT equipment has special pediatric features, and includes a range of dose management settings that can be calibrated for safe use on infants, children and adolescents.

Diagnostic CT equipment has special pediatric features, and includes a range of dose management settings that can be calibrated for safe use on infants, children and adolescents.

Radiation dose management is central to child patient safety. Medical imaging plays an increasing role in the accurate diagnosis and treatment of numerous medical conditions. The speed, accuracy and noninvasiveness of medical imaging have also contributed to a sharp increase in the number of imaging procedures.

In the U.S., the use of computed tomography (CT) scans nearly tripled, from 52 scans per 1,000 patients to149 scans per 1,000 patients between 1996 and 2010.1 According to the American College of Radiology (ACR), nearly 68 million CT scans are performed annually in the U.S. today. Japan, the United States and Australia lead the world in number of CT scanners per head of the population, with 64, 26 and 18 scanners per million citizens respectively.2

 

Dosing in Pediatrics

Diagnosing an adult is different than a child. As the number of procedures has increased, so too has concern about exposure to radiation. Children are more radiosensitive: Their organs and cells are growing faster and therefore could be potentially damaged by ionizing radiation.

“Everybody cares about radiation dose, but the most sensitive to radiation are children, because they’re growing,” said Richard Towbin, M.D., chief of radiology at Phoenix Children’s Hospital. “We have to relate our dose choices and our protocols for imaging to the group of problems we’re trying to solve.”

The range of ages and disease types in a pediatric hospital such as Phoenix Children’s is vast — on one day a radiologist could be conducting a magnetic resonance imaging (MRI) scan on a fetus, on another it could be a CT scan on an 18-year-old, 220-pound football player. Whether it is a baby or a teenager, the aim is the same — to provide safety and comfort for the patient and their family throughout the entire imaging procedure.

“Children have different types of cancers and different types of heart disease, and different types of neurologic diseases than an adult might,” said Dianna Bardo, M.D., director of body MR and co-director of 3D Innovation Lab at Phoenix Children’s. “An adult might have a longer time to develop an injury or to develop a disease process, so we’re looking at things in earlier stages, maybe more subtle stages in a child than we are in an adult.”

 

Maintaining Image Quality

There are many modalities of medical imaging procedures in Phoenix Children’s, each of which uses different technologies and techniques, and uses ionizing radiation to generate images of the body. Radiation doses for imaging procedures such as a CT, X-ray or fluoroscopy are set according to the child’s body size and the disease type.

Diagnostic equipment has special pediatric features, and includes a range of dose management settings that can be calibrated for safe use on infants, children and adolescents.

Recently there has been an increase of new healthcare technology to manage radiation dose for patients without losing image quality. Not long ago dose reduction in diagnostic imaging would lead to poorer images; now technology has put more tools into the hands of radiologists, enabling them to make adjustments based on the patient need, without sacrificing on the quality of the image.

 

Designing Imaging Protocols

Establishing protocols saves time and means radiologists can assess each patient and decide which protocol will suit the procedure. Pediatrics has a lot of nuances and complexity compared to an adult hospital, which requires close collaboration between hospital and technology partner.

As part of its partnership with Philips, Phoenix Children’s has collaborated in designing and testing new protocols in its imaging equipment that is child-sized and appropriate for particular age groups or a particular organ.

“The CT scanner might not come with protocols that are adequate for each hospital situation. We’ve designed our own protocols to do that, and we’ve shared those with Philips. So, they’re out there in the world, freely available to Philips users,” Bardo said. “If the child comes in and they’re 6 feet 2 inches tall and 180 pounds, then I know that I can choose the correct protocol on the fly, just visually knowing that I’ve got the right thing. That’s very important.”

Results are specific to the institution where they were obtained and may not reflect the results achievable at other institutions.

 

For more information: www.philips.com/nobounds

 

References

1. LA Times, ‘Use of imaging tests soars, raising questions on radiation risk’, 2012 - http://articles.latimes.com/2012/jun/12/science/la-sci-ct-mri-growth-20120613

2. Cancer risks from diagnostic radiology. Hall EJ, Brenner DJ Br J Radiol. 2008 May; 81(965):362-78.

Related Content

Partners HealthCare Chooses Visage 7 for Enterprise Imaging
News | Enterprise Imaging | January 18, 2019
Visage Imaging Inc. announced the signing of Partners HealthCare, the largest health system in Massachusetts, for...
Seamless Interoperability – Fact or Fiction? This webinar will show how Nemours Children’s Health System adoption of ScImage’s PICOM365 Enterprise PACS  improved workflow. The product will be highlighted at HIMSS 2019.
Sponsored Content | Webinar | PACS | January 17, 2019
This ScImage-sponsored ITN/DAIC webinar will be held at 2 p.m. Eastern time, Wednesday, Feb. 6, 2019.
NewYork-Presbyterian Hospital Partners With Philips for Health IT and Clinical Informatics
News | Enterprise Imaging | January 16, 2019
Philips announced that NewYork-Presbyterian Hospital has chosen to implement the company’s IntelliSpace Enterprise...
AI Approach Outperformed Human Experts in Identifying Cervical Precancer
News | Digital Pathology | January 10, 2019
January 10, 2019 — A research team led by investigators from the National Institutes of Health and Global Good has de
Artificial intelligence, also called deep learning and machine learning, was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting.

Artificial intelligence was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting, which included a large area with its own presentation therater set asside for AI vendors.

Feature | Artificial Intelligence | January 10, 2019 | Dave Fornell, Editor
Hands down, the hottest topic in radiology the past two years has been the implementation of...
3-D Reconstruction of Ichthyosaurus Skull

A 3-D reconstruction of the ichthyosaurus skull from a computed tomography (CT) scan. Image courtesy of Nigel Larkin, taken at Royal Veterinary College, London.

News | Computed Tomography (CT) | January 09, 2019
A nearly meter-long skull of a giant fossil marine ichthyosaur found in a farmer's field more than 60 years ago has...
SCCT Releases New Guideline for CT Use During TAVR
News | Computed Tomography (CT) | January 08, 2019
The Society of Cardiovascular Computed Tomography (SCCT) has released a new expert consensus document for computed...
Pacific Northwest VA Network Selects Carestream as Enterprise PACS Supplier
News | PACS | January 08, 2019
Carestream has been awarded a multimillion-dollar healthcare information technology (IT) contract for Veterans Affairs...
Artificial Intelligence Pinpoints Nine Different Abnormalities in Head Scans

A brain scan (left) showing an intraparenchymal hemorrhage in left frontal region and a scan (right) of a subarachnoid hemorrhage in the left parietal region. Both conditions were accurately detected by the Qure.ai tool. Image courtesy of Nature Medicine.

News | Artificial Intelligence | January 07, 2019
The rise in the use of computed tomography (CT) scans in U.S. emergency rooms has been a well-documented trend1 in...