News | January 29, 2014

Brain Imaging Could Predict Deficits in Premature Infants

January 29, 2014 — Physicians may be able to identify premature infants at-risk for deficits using 3-D MRI imaging techniques developed by clinician scientists at The Research Institute at Nationwide Children's Hospital. The imaging technique could enable early neuroprotective therapies and help determine if they are effective in a matter of weeks, instead of the two to five years previously required.
 
Researchers developed protocol for using the imaging technique to study development of 10 brain tracts, which was published in Plos One. Colorful 3-D images of each tract revealed connections of segments to different parts of the brain or the spinal cord. Each of the 10 tracts is important for certain functions and abilities, such as language, movement or vision.
 
"Developing a reliable and reproducible methodology for studying the premature brain was crucial in order for us to get to the next step: assessing neuroprotective therapies," said Nehal A. Parikh, D.O., principal investigator, Center for Perinatal Research at Nationwide Children's and senior author on the paper. "Now that we have this protocol, we can improve the standard of care and evaluate efforts to promote brain health within 8 to 12 weeks of beginning the interventions. That way, we can quickly see what really works."
 
The study compared diffusion tensor tractography (DTT) scans of extremely low birth weight infants to those of healthy, full-term newborns. DTT is a MRI technique that produces 3-D images and is able to detect the brain's structure and subtle injuries.
 
The research team confirmed differences in the fibrous structure of the 10 tracts between healthy, full-term infant brains and those of premature babies. 
 
"This protocol opens the field to far greater use of the methodology for targeting and assessing therapies in these infants," said Dr. Parikh, who also is an associate professor of pediatrics at The Ohio State University College of Medicine. "We already have studies underway using our DTT segmentation methodology to measure the effectiveness of early neuroprotective interventions, such as the use of breast milk or skin-to-skin contact while premature babies are in intensive care."
 
As imaging technology continues to be refined, targeted therapies based on specific regions of the brain with a delay or injury may become reality, Dr. Parikh predicted. 
 
For more information: www.plosone.org

Related Content

Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
Russian Team Developing New Technology to Significantly Reduce MRI Research Costs
News | Magnetic Resonance Imaging (MRI) | January 16, 2018
January 16, 2018 — Researchers from the NUST MISIS Engineering Center for Industrial Technologies in Russia have deve
Transpara Deep Learning Software Matches Experienced Radiologists in Mammogram Reading
News | Computer-Aided Detection Software | January 12, 2018
Deep learning and artificial intelligence improves the efficiency and accuracy of reading mammograms, according to...
Fat Distribution in Women and Men Provides Clues to Heart Attack Risk
News | Women's Health | January 11, 2018
January 11, 2018 – It’s not the amount of fat in your body but where it is stored that may increase your risk for hea
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Minimally Invasive Treatment Provides Relief from Back Pain

Lumbar spine MRI showing disc herniation and nerve root at baseline and one month after treatment

News | Interventional Radiology | January 11, 2018
The majority of patients were pain free after receiving a new image-guided pulsed radiofrequency treatment for low back...
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
CT Shows Enlarged Aortas in Former Pro Football Players

3-D rendering from a cardiac CT dataset demonstrating mild dilation of the ascending aorta.

News | Computed Tomography (CT) | January 11, 2018
Former National Football League (NFL) players are more likely to have enlarged aortas, a condition that may put them at...

Size comparison between 3-D printed prosthesis implant and a penny.

News | 3-D Printing | January 11, 2018
January 11, 2018 — Researchers using...
Overlay Init