News | Lung Cancer | March 28, 2017

Biomarker Blood Test Shows Lung Cancer Recurrence Months Before CT Scans

Prospective clinical trial demonstrates that testing for CTCs reveals lung cancer recurrence an average of six months earlier than conventional scans

lung cancer recurrence, biomarker blood test, CT scans, 2017 Multidisciplinary Thoracic Cancers Symposium, clinical study

March 28, 2017 — Results from a prospective clinical trial showed a blood test looking at specific biomarkers was able to detect lung cancer recurrences an average of six months before conventional imaging methods found evidence of recurrence. In the largest prospective clinical trial to date of circulating tumor cells (CTC) as biomarkers for locally advanced lung cancer, the findings indicate that blood tests potentially can be used in conjunction with computed tomography (CT) and positron emission tomography (PET)/CT scans to guide personalized treatment planning for patients with non-small cell lung cancer (NSCLC). The study was presented at the 2017 Multidisciplinary Thoracic Cancers Symposium, March 16-18 in San Diego.

Lung cancer is known for its aggressive nature and ability to spread throughout a patient's body. Cancer cells that enter the blood stream are known as circulating tumor cells (CTCs). While the current standard of care following treatment for locally advanced NSCLC is for patients to get surveillance CT or PET/CT scans to monitor for cancer recurrence, new tests can track elevated CTC counts through a simple blood test, allowing for more frequent and less invasive follow-up. Other biomarkers, such as circulating tumor DNA (ctDNA), also have been studied in lung cancer, although ctDNA trials have been largely restricted to advanced (i.e., metastatic) disease, which is not amenable to curative treatments. By using CTC counts as a biomarker for recurrence in localized disease, treatment teams may be able to diagnose recurrence significantly earlier than they could with imaging scans alone.

"The additional lead time afforded by an earlier diagnosis may enable doctors to better tailor alternative and salvage treatments to improve their patients' outcomes and quality of life. Earlier detection of recurrence may even translate into an increased likelihood of curing these patients when their tumor burden is lowest and thus more likely to respond to therapy," said Chimbu Chinniah, lead author of the study and a research fellow in radiation oncology in the Perelman School of Medicine at the University of Pennsylvania in Philadelphia.

A total of 48 patients with stage II-III locally advanced NSCLC were enrolled in the prospective clinical trial. All patients were treated with concurrent chemoradiation. Blood samples were obtained before treatment, during treatment (at weeks 2, 4 and 6) and following treatment (at months 1, 3, 6, 12, 18 and 24). Circulating tumor cells were identified by analyzing the samples with an adenoviral probe that detects elevated activity of a specific enzyme that is produced when cancer cells replicate. Surveillance scans with CT or PET/CT imaging were performed at three-month intervals.

Patients ranged in age from 31 to 84, with a median age of 66 years. No patient had a history of prior malignancy. Researchers also assessed patient gender (54 percent male), race (69 percent Caucasian, 21 percent African American), smoking status (77 percent former, 21 percet current), histology (48 percent squamous cell carcinoma, 46 percent adenocarcinoma) and primary tumor size (median 3.7 centimeters).

At a median follow-up of 10.9 months following treatment for locally advanced NSCLC, nearly half (46 percent) of the patients experienced recurrence or progression, as detected by conventional surveillance scans and biopsies. The median time to recurrence was 7.6 months, with a range of 1.3 to 32 months. Blood samples were obtained following chemoradiation therapy for 20 of the 22 recurrent patients.

Fifteen of these 20 patients had elevated CTC counts following treatment, with a median lead time of 4.7 months and a range of 1.2 months to one year. Of these 15 patients, two-thirds demonstrated a rise in CTC counts an average of six months before PET/CT or CT scans detected the recurrence. For many patients, CTC levels were negative immediately following treatment but rose subsequently in the months following treatment. While most of these CTC level rises occurred before disease recurrence was identified on imaging, four of the 20 patients experienced recurrences that were detected with imaging before elevated CTC levels indicated the disease had returned.

"The future use of circulating tumor cells as a diagnostic and prognostic tool for localized NSCLC looks promising. Although imaging remains the cornerstone of post-treatment surveillance for patients, blood tests could, and perhaps should, be used in conjunction with imaging scans to better monitor patients during their follow-up period after treatment," said Charles B. Simone, II, M.D., the study's senior author and principal investigator, as well as an associate professor of radiation oncology at the University of Maryland School of Medicine and medical director of the Maryland Proton Treatment Center in Baltimore.

For more information: www.thoracicsymposium.org

Related Content

Largest case series (n=30) to date yields high frequency (77%) of negative chest CT findings among pediatric patients (10 months-18 years) with COVID-19, while also suggesting common findings in subset of children with positive CT findings

A and B, Unenhanced chest CT scans show minimal GGOs (right lower and left upper lobes) (arrows) and no consolidation. Only two lobes were affected, and CT findings were assigned CT severity score of 2. Image courtesy of American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | May 29, 2020
May 29, 2020 — An investigation published open-access in the ...
The Philips Lumify point-of-care ultrasound (POCUS) system assessing a patient in the emergency room combined with telehealth to enable real-time collaboration with other physicians.

The Philips Lumify point-of-care ultrasound (POCUS) system assessing a patient in the emergency room combined with telehealth to enable real-time collaboration with other physicians.

News | Coronavirus (COVID-19) | May 26, 2020
May 26, 2020  — Philips Healthcare recently received 510(k) clearance from the U.S.
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo. Gadolinium is contained in contrast agents given to patients undergoing medical magnetic resonance imaging (MRI) scans, and it has been shown in labs to become toxic when exposed to ultraviolet rays. The researchers found significantly elevated levels, particularly near water treatment plants, highlighting the need for new public policy and removal technologies as MRI become even more commonp

Samples were taken along rivers around Tokyo. Measurements of rare earth element quantities indicate a clearly elevated amount of gadolinium compared to that in natural shale. Graphics courtesy of Tokyo Metropolitan University

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers from Tokyo Metropolitan...
Remote reading of imaging studies on home picture archiving and communication systems (PACS) workstations can contribute to social distancing, protect vulnerable radiologists and others in the hospital, and ensure seamless interpretation capabilities in emergency scenarios, according to an open-access article published ahead-of-print by the American Journal of Roentgenology (AJR).

Srini Tridandapani, M.D., Ph.D.

News | PACS | May 21, 2020
May 21, 2020 — 
Examples of chest CT images of COVID-19 (+) patients and visualization of features correlated to COVID-19 positivity. For each pair of images, the left image is a CT image showing the segmented lung used as input for the CNN (convolutional neural network algorithm) model trained on CT images only, and the right image shows the heatmap of pixels that the CNN model classified as having SARS-CoV-2 infection (red indicates higher probability). (a) A 51-year-old female with fever and history of exposure to SARS-

Figure 1: Examples of chest CT images of COVID-19 (+) patients and visualization of features correlated to COVID-19 positivity. For each pair of images, the left image is a CT image showing the segmented lung used as input for the CNN (convolutional neural network algorithm) model trained on CT images only, and the right image shows the heatmap of pixels that the CNN model classified as having SARS-CoV-2 infection (red indicates higher probability). (a) A 51-year-old female with fever and history of exposure to SARS-CoV-2. The CNN model identified abnormal features in the right lower lobe (white color), whereas the two radiologists labeled this CT as negative. (b) A 52-year-old female who had a history of exposure to SARS-CoV-2 and presented with fever and productive cough. Bilateral peripheral ground-glass opacities (arrows) were labeled by the radiologists, and the CNN model predicted positivity based on features in matching areas. (c) A 72-year-old female with exposure history to the animal market in Wuhan presented with fever and productive cough. The segmented CT image shows ground-glass opacity in the anterior aspect of the right lung (arrow), whereas the CNN model labeled this CT as negative. (d) A 59-year-old female with cough and exposure history. The segmented CT image shows no evidence of pneumonia, and the CNN model also labeled this CT as negative.  

News | Coronavirus (COVID-19) | May 19, 2020
May 19, 2020 — Mount Sinai researchers are the first in the country to use...
Advanced imaging data exchange is now live in Colorado due to the partnership of Health Images and the Colorado Regional Health Information Organization

Getty Images

News | Radiology Business | May 18, 2020
May 18, 2020 — 
Radiologists from Shanghai discuss modifying exam process and disinfecting exam room, while outlining personal protection measures during the coronavirus disease outbreak

(HIS = hospital information system, RIS = radiology information system) Image courtesy of American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | May 18, 2020
May 18, 2020 — In an open-access article published ahead-of-print