Feature | Contrast Media Injectors | April 11, 2019 | By Jeff Zagoudis

Using Artificial Intelligence to Reduce Gadolinium Contrast

This article orginally ran as an introduction to the Contrast Media Injectors comparison chart in the April 2019 issue. You can view the chart here

Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose. Image courtesy of Enhao Gong, Ph.D.

Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose. Image courtesy of Enhao Gong, Ph.D.

One of the most controversial issues in radiology in recent years has been the use of gadolinium as a contrast agent in magnetic resonance imaging (MRI) exams. Some studies and high-profile cases have suggested trace amounts of gadolinium are retained in the body after an exam and may cause a number of side effects, including nephrogenic systemic fibrosis (NSF) in the kidneys. A recent study out of Stanford University demonstrated how the need for gadolinium contrast could be reduced or eliminated by using artificial intelligence (AI)-based image reconstruction.

“There is concrete evidence that gadolinium deposits in the brain and body,” said study lead author Enhao Gong, Ph.D. “While the implications of this are unclear, mitigating potential patient risks while maximizing the clinical value of the MRI exams is imperative.”

Gong and colleagues created a deep learning algorithm, a form of AI, to analyze MRI datasets. With deep learning, a computer algorithm is shown large amounts of data and learns to recognize patterns and features in an image. The goal in radiology is for the computer to be able to identify critical findings in an image more or as quickly as a human radiologist.

For this particular study, the algorithm was shown MR images from 200 patients who had received contrast-enhanced MRI scans for a variety of indications. Three sets of images were collected for each patient:

•    Pre-contrast scans, done prior to contrast administration and referred to as the zero-dose scans;

•    Low-dose scans, acquired after 10 percent of the standard gadolinium dose administration; and

•    Full-dose scans, acquired after 100 percent dose administration.

Using this methodology allowed the algorithm to learn the difference between full- and low-dose administration, with the pre-contrast scans used as a control. With this knowledge at hand, the algorithm was able to reconstruct an image as if it was a full-dose scan from a 10 percent dose image. Study results showed there was no significant difference between an actual full-dose image and a reconstructed full-dose image.

Gong and colleagues said their study results indicate that eventually, the need for full dose gadolinium contrast could be eliminated. “Low-dose gadolinium images yield significant untapped clinically useful information that is accessible now by using deep learning and AI,” he said.

Equally important as the research findings themselves was validating the outputs of the algorithm, because radiologists need to be able to trust the results they are receiving. The research team employed quantitative metrics to evaluate the improvement of the enhanced contrast via deep learning, including peak signal-to-noise ratio (PSNR), root mean square error (RMSE) and structural similarity index (SSIM). Qualitative metrics like image quality and contrast enhancement quality were used to assess the results of the deep learning-based enhancement. A non-inferiority test was used to assess the performance of the AI method and validate the ability to reduce contrast dose without sacrificing image quality. “We showed that it’s doing a certain type of enhancement or denoising on the subtraction level. But the subtraction is not done manually because the algorithm learns how to do subtraction and enhancement. So the signal was already in there, but the human eye cannot see the difference — but the algorithm can,” said Gong.

The next steps involve deploying the algorithm in a clinical setting, where Gong believes it will see its greatest utility. He said the algorithm will be tested across a wider range of MRI scanners, and even with other contrast agents besides gadolinium. “We’re not trying to replace existing imaging technology,” he said. “We’re trying to improve it and generate more value from the existing information while looking out for the safety of our patients.”

Gong received a Radiological Society of North America (RSNA) “Trainee Research Prize — Resident” award for his research, which was presented at the RSNA 2018 annual meeting last November.

 

Related Content of MRI Gadolinium Safety Concerns

The Debate Over Gadolinium MRI Contrast Toxicity

VIDEO: How Serious is MRI Gadolinium Retention in the Brain and Body? An interview with Max Wintermark, M.D.

VIDEO “Big Concerns Remain for MRI Gadolinium Contrast Safety at RSNA 2017,” An interview with Emanuel Kanal, M.D.

Radiology Has Failed to Properly Assess or Track MRI Gadolinium Contrast Safety

Recent Developments in Contrast Media

FDA Committee Votes to Expand Warning Labels on Gadolinium-Based Contrast Agents

European Medicines Agency Issues Update on Gadolinium Contrast Agents

ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents

FDA: No Harm in MRI Gadolinium Retention in the Brain

VIDEO: MRI Gadolinium Contrast Retention in the Brain

Gadolinium May Remain in Brain After Contrast MRI

 

Related Content

Image courtesy of GE Healthcare

Feature | Mobile C-Arms | July 08, 2020 | By Melinda Taschetta-Millane
Moblie C-arms have seen several advances over the past de
At the American Association of Physicists in Medicine (AAPM) 2019 meeting, new artificial intelligence (AI) software to assist with radiotherapy treatment planning systems was highlighted. The goal of the AI-based systems is to save staff time, while still allowing clinicians to do the final patient review. 
Feature | Treatment Planning | July 08, 2020 | By Melinda Taschetta-Millane
At the American Association of Physicists in Medicine (AAPM) 201
A 3-D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a study published in the journal Radiology.

Volume flow as a function of color flow gain (at a single testing site). For each row the color flow c-plane and the computed volume flow are shown as a function of color flow gain. The c-plane is shown for four representative gain levels, whereas the computed volume flow is shown for 12–17 steps across the available gain settings. Flow was computed with (solid circles on the graphs) and without (hollow circles on the graphs) partial volume correction. Partial volume correction accounts for pixels that are only partially inside the lumen. Therefore, high gain (ie, blooming) does not result in overestimation of flow. Systems 1 and 2 converge to true flow after the lumen is filled with color pixel. System 3 is nearly constant regarding gain and underestimates the flow by approximately 17%. Shown are mean flow estimated from 20 volumes, and the error bars show standard deviation. Image courtesy of the journal Radiology

News | Ultrasound Imaging | July 01, 2020
July 1, 2020 — A 3-D ultrasound
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...
Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for its head CT scan product qER. The US Food and Drug Administration's decision covers four critical abnormalities identified by Qure.ai's emergency room product.
News | Artificial Intelligence | June 30, 2020
June 30, 2020 — Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for