News | Artificial Intelligence | February 15, 2017

Deep Learning in Medical Imaging to Create $300 Million Market by 2021

While early iterations have been met with skepticism, many radiologists are taking a wait-and-see approach

deep learning, artificial inteligence, medical imaging, Signify Research market report, 2021
Signify Research, medical imaging, deep learning, image analysis
Signify Research, world market, medical image analysis, deep learning, artificial intelligence

February 15, 2017 — Deep learning, also known as artificial intelligence, will increasingly be used in the interpretation of medical images to address many long-standing industry challenges. This will lead to a $300 million market by 2021, according to a new report by Signify Research, an independent supplier of market intelligence and consultancy to the global healthcare information technology industry.

In most countries, there are not enough radiologists to meet the ever-increasing demand for medical imaging. Consequently, many radiologists are working at full capacity. The situation will likely get worse, as imaging volumes are increasing at a faster rate than new radiologists entering the field. Even when radiology departments are well-resourced, radiologists are under increasing pressure due to declining reimbursement rates and the transition from volume-based to value-based care delivery. Moreover, the manual interpretation of medical images by radiologists is subjective, often based on a combination of experience and intuition, which can lead to clinical errors.

A new breed of image analysis software that uses advanced machine learning methods, e.g. deep learning, is tackling these problems by taking on many of the repetitive and time-consuming tasks performed by radiologists. There is a growing array of “intelligent” image analysis products that automate various stages of the imaging diagnosis workflow. In cancer screening, computer-aided detection can alert radiologists to suspicious lesions. In the follow-up diagnosis, quantitative imaging tools provide automated measurements of anatomical features. At the top-end of the scale of diagnostic support, computer-aided diagnosis provides probability-driven, differential diagnosis options for physicians to consider as they formulate their diagnostic and treatment decisions.

“Radiology is evolving from a largely descriptive field to a more quantitative discipline. Intelligent software tools that combine quantitative imaging and clinical workflow features will not only enhance radiologist productivity, but also improve diagnostic accuracy,” said Simon Harris, principal analyst at Signify Research and author of the report.

However, it is early days for deep learning in medical imaging. There are only a handful of commercial products and it is uncertain how well deep learning will cope with variations in patient demographics, imaging protocols, image artifacts, etc. Many radiologists were left underwhelmed by early-generation computer-aided detection, which used traditional machine learning and relied heavily on feature engineering. They remain skeptical of machine learning’s abilities, despite the leap in performance of today’s deep learning solutions, which automatically learn about image features from radiologist-annotated images and a "ground-truth”. Furthermore, the “black box” nature of deep learning and the lack of traceability as to how results are obtained could lead to legal implications. While none of these problems are insurmountable, healthcare providers are likely to take a ‘wait and see’ approach before investing in deep learning-based solutions.

“Deep learning is a truly transformative technology and the longer-term impact on the radiology market should not be underestimated. It’s more a question of when, not if, machine learning will be routinely used in imaging diagnosis”, Harris concluded.

“Machine Learning in Medical Imaging – 2017 Edition” provides a data-centric and global outlook on the current and projected uptake of machine learning in medical imaging. The report blends primary data collected from in-depth interviews with healthcare professionals and technology vendors, to provide a balanced and objective view of the market.

For more information: www.signifyresearch.net

Related Content

FDA Clears Bay Labs' EchoMD AutoEF Software for AI Echo Analysis
Technology | Cardiovascular Ultrasound | June 19, 2018
Cardiovascular imaging artificial intelligence (AI) company Bay Labs announced its EchoMD AutoEF software received 510(...
News | Remote Viewing Systems | June 14, 2018
International Medical Solutions (IMS) recently announced that the American College of Radiology (ACR) added IMS'...
Riverain Technologies Issued U.S. Patent for Vessel Suppression Technology
News | Computed Tomography (CT) | June 14, 2018
Riverain Technologies announced that the United States Patent and Trademark Office (USPTO) has awarded the company a...
Wake Radiology Launches First Installation of EnvoyAI Platform
News | Artificial Intelligence | June 13, 2018
Artificial intelligence (AI) platform provider EnvoyAI recently completed their first successful customer installation...
American Society of Neuroradiology Honors Peter Chang with Cornelius G. Dyke Memorial Award
News | Neuro Imaging | June 13, 2018
Peter Chang, M.D., current neuroradiology fellow at UCSF and recently recruited co-director of the UCI Center for...
How AI and Deep Learning Will Enable Cancer Diagnosis Via Ultrasound

The red outline shows the manually segmented boundary of a carcinoma, while the deep learning-predicted boundaries are shown in blue, green and cyan. Copyright 2018 Kumar et al. under Creative Commons Attribution License.

News | Ultrasound Imaging | June 12, 2018 | Tony Kontzer
June 12, 2018 — Viksit Kumar didn’t know his mother had...
Zebra Medical Vision Unveils AI-Based Chest X-ray Research
News | Artificial Intelligence | June 08, 2018
June 8, 2018 — Zebra Medical Vision unveiled its Textray chest X-ray research, which will form the basis for a future
Konica Minolta Launches AeroRemote Insights for Digital Radiography
Technology | Analytics Software | June 07, 2018
Konica Minolta Healthcare Americas Inc. announced the release of AeroRemote Insights, a cloud-based, business...
Vinay Vaidya, Chief Medical Information Officer at Phoenix Children’s Hospital

Vinay Vaidya, Chief Medical Information Officer at Phoenix Children’s Hospital

Sponsored Content | Case Study | Artificial Intelligence | June 05, 2018
The power to predict a cardiac arrest, support a clinical diagnosis or nudge a provider when it is time to issue medi
How image sharing through a health information exchange benefits patients while saving time and money is depicted in this slide shown at HIMSS 2018. Graphic courtesy of Karan Mansukhani.

How image sharing through a health information exchange benefits patients while saving time and money is depicted in this slide shown at HIMSS 2018. Graphic courtesy of Karan Mansukhani.

Feature | Information Technology | June 05, 2018 | By Greg Freiherr
A regional image exchange system is saving lives and reducing radiology costs in Maryland by improving the efficiency
Overlay Init