Contributing Editor Greg Freiherr offers an overview of computed tomography (CT) advances at the Radiological Society of North America (RSNA) 2015. The video includes Freiherr during his booth tours with some of the key vendors who were featuring new technology.
Technology Report:
Computed Tomography (CT)
Related Content

Electronic cigarette or vaping product use-associated lung injury in a 51-year-old man manifesting as an acute lung injury pattern at CT with subsequent organization. (a, c) Axial unenhanced CT images at presentation through (a) mid and (c) lower lungs show ground-glass opacity with subpleural sparing (arrows); this distribution was present in 45% of chest CT studies at presentation in our cohort (11). (b, d) Axial unenhanced CT images obtained 6 days later show ground-glass opacity has transitioned to consolidation and mild architectural distortion, consistent with developing organization. The patient was initially treated with antibiotics followed by corticosteroid therapy, with slow clinical improvement. Image courtesy of Radiological Society of North America

B, Representative computational model shows lung stroma intraorgan structure of XCAT phantom that was developed using anatomically informed mathematic model. Inset shows enlarged view for better visibility of details and small structures. C, Voxelized rendition (ground truth) of XCAT phantom highlights detailed model of lung parenchyma. Inset shows enlarged view for better visibility of details and small structures. Image courtesy of the American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

T Salditt, M Eckermann
Sections through the three-dimensional reconstruction volume (upper left, grey) around a pulmonary alveolus with hyaline membrane (lower left, yellow). On the right, the images are superimposed. In the centre is the air bubble (alveolus). The electron density is represented by different shades of grey. On the inside of the air bubble is a layer of proteins and dead cell residues, the "hyaline membrane". This deposit, which can be represented in its three-dimensional structure for the first time by the new method, reduces the gas exchange and leads to respiratory distress.

Sheer stresses on the walls of arteries are believed to cause the formation atherosclerotic plaques. This is an area of research that is expected to see increased use in the next few years. This study was presented at SCCT 2020 as an example of how sheer stresses can help evaluate and predict the patency of coronary artery bypass grafts (CABG).

a) Includes scintigraphy and PET with and without concomitant CT. b) Includes conventional radiography, dual-energy x-ray absorptiometry, fluoroscopy, and radiography performed during radiologic interventions. c) Includes general, cardiothoracic, maxillary, plastic, and orthopedic surgery and neurosurgery. d) Includes allergology, cardiology, geriatrics, general internal medicine, pulmonology, gastroenterology, and rheumatology. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

