Samples from the dataset used in this study. (a) X-ray with PA view of a patient with COVID-19; (b) X-ray with AP view of a patient with COVID-19; (c) X-ray of a healthy patient from Dataset A; (d) X-ray of a healthy patient from Dataset B.

Samples from the dataset used in this study. (a) X-ray with PA view of a patient with COVID-19; (b) X-ray with AP view of a patient with COVID-19; (c) X-ray of a healthy patient from Dataset A; (d) X-ray of a healthy patient from Dataset B. Images courtesy of IEEE/CAA JOURNAL OF AUTOMATICA SINICA


March 29, 2021 — X-rays, first used clinically in the late 1890s, could be a leading-edge diagnostic tool for COVID-19 patients with the help of artificial intelligence, according to a team of researchers in Brazil who taught a computer program, through various machine learning methods, to detect COVID-19 in chest X-rays with 95.6 to 98.5% accuracy.

They published their results in IEEE/CAA Journal of Automatica Sinica, a joint publication of the IEEE and the Chinese Association of Automation.

The researchers have previously focused on detecting and classifying lung pathologies, such as fibrosis, emphysema and lung nodules, through medical imaging. Common symptoms presented by suspected COVID-19 infections include respiratory distress, cough and, in more aggressive cases, pneumonia - all visible via medical imaging such as computed tomography (CT) scans or X-rays.

"When the COVID-19 pandemic arose, we agreed to put our expertise to use to help deal with this new global problem," said corresponding author Victor Hugo C. de Albuquerque, a researcher in the Laboratory of Image Processing, Signals, and Applied Computing and with the Universidade de Fortaleza.

Many medical facilities have both an inadequate number of tests and lengthy processing times, Albuquerque said, so the research team focused on improving a tool that is readily available at every hospital and already frequently used in diagnosing COVID-19: X-ray devices.

"We decided to investigate if a COVID-19 infection could be automatically detected using X-ray images," Albuquerque said, noting that most X-ray images are available within minutes, compared to the days required for swab or saliva diagnostic tests.

However, the researchers found a lack of publicly available chest X-rays to train their artificial intelligence model to automatically identify the lungs of COVID-19 patients. They had just 194 COVID-19 X-rays and 194 healthy X-rays, while it usually takes thousands of images to thoroughly teach a model to detect and classify a particular target. To compensate, they took a model trained on a large dataset of other X-ray images and trained it to use the same methods to detect lungs likely infected with COVID-19. They used several different machine learning methods, two of which resulted in a 95.6% and a 98.5% accuracy rating, respectively.

"Since X-rays are very fast and cheap, they can help to triage patients in places where the health care system has collapsed or in places that are far from major centers with access to more complex technologies," Albuquerque said. "This approach to detect and classify medical images automatically can assist doctors in identifying, measuring the severity and classifying the disease."

Next, Albuquerque said, the researchers plan to continue testing their method with larger datasets as they become available, with the ultimate goal of developing a free online platform for medical image classification.

For more information: www.ieee-jas.org


Related Content

News | Radiology Business

The issue of sustainability in healthcare has gained increasing focus over the past several years. During a 2022 plenary ...

Time May 06, 2025
arrow
News | X-Ray

May 01, 2025 — Researchers from the Rajpurkar Lab in the Department of Biomedical Informatics at Harvard Medical School ...

Time May 01, 2025
arrow
News | Lung Imaging

April, 15, 2025 — Optellum has entered an agreement with Bristol Myers Squibb to leverage AI in early diagnosis and ...

Time April 17, 2025
arrow
News | Pediatric Imaging

April 10, 2025 — Cincinnati Children’s and GE HealthCare will form a strategic research program focused on driving ...

Time April 10, 2025
arrow
News | X-Ray

March 18, 2025 — GE HealthCare recently announced a collaboration with NVIDIA expanding the existing relationship ...

Time March 19, 2025
arrow
News | SPECT Imaging

Feb. 5, 2025 — Serac Healthcare Ltd., a clinical radiopharmaceutical company developing an innovative molecular imaging ...

Time February 05, 2025
arrow
News | Computed Tomography (CT)

Dec. 3, 2024 — During RSNA '24, GE HealthCare announced the 510(k) submission to the U.S. Food and Drug Administration ...

Time December 18, 2024
arrow
News | Radiology Imaging

Dec. 4, 2024 – Konica Minolta Healthcare Americas and Gleamer have announced a strategic partnership to help ...

Time December 06, 2024
arrow
News | SPECT Imaging

Dec. 2, 2024 — GE HealthCare has agreed to acquire full ownership of Nihon Medi-Physics Co., Ltd (NMP), by purchasing ...

Time December 05, 2024
arrow
News | Radiology Imaging

Nov. 13, 2024 — Agfa Radiology Solutions will feature live demonstrations of state-of-the-art digital X-ray rooms ...

Time November 14, 2024
arrow
Subscribe Now