Samples from the dataset used in this study. (a) X-ray with PA view of a patient with COVID-19; (b) X-ray with AP view of a patient with COVID-19; (c) X-ray of a healthy patient from Dataset A; (d) X-ray of a healthy patient from Dataset B.

Samples from the dataset used in this study. (a) X-ray with PA view of a patient with COVID-19; (b) X-ray with AP view of a patient with COVID-19; (c) X-ray of a healthy patient from Dataset A; (d) X-ray of a healthy patient from Dataset B. Images courtesy of IEEE/CAA JOURNAL OF AUTOMATICA SINICA


March 29, 2021 — X-rays, first used clinically in the late 1890s, could be a leading-edge diagnostic tool for COVID-19 patients with the help of artificial intelligence, according to a team of researchers in Brazil who taught a computer program, through various machine learning methods, to detect COVID-19 in chest X-rays with 95.6 to 98.5% accuracy.

They published their results in IEEE/CAA Journal of Automatica Sinica, a joint publication of the IEEE and the Chinese Association of Automation.

The researchers have previously focused on detecting and classifying lung pathologies, such as fibrosis, emphysema and lung nodules, through medical imaging. Common symptoms presented by suspected COVID-19 infections include respiratory distress, cough and, in more aggressive cases, pneumonia - all visible via medical imaging such as computed tomography (CT) scans or X-rays.

"When the COVID-19 pandemic arose, we agreed to put our expertise to use to help deal with this new global problem," said corresponding author Victor Hugo C. de Albuquerque, a researcher in the Laboratory of Image Processing, Signals, and Applied Computing and with the Universidade de Fortaleza.

Many medical facilities have both an inadequate number of tests and lengthy processing times, Albuquerque said, so the research team focused on improving a tool that is readily available at every hospital and already frequently used in diagnosing COVID-19: X-ray devices.

"We decided to investigate if a COVID-19 infection could be automatically detected using X-ray images," Albuquerque said, noting that most X-ray images are available within minutes, compared to the days required for swab or saliva diagnostic tests.

However, the researchers found a lack of publicly available chest X-rays to train their artificial intelligence model to automatically identify the lungs of COVID-19 patients. They had just 194 COVID-19 X-rays and 194 healthy X-rays, while it usually takes thousands of images to thoroughly teach a model to detect and classify a particular target. To compensate, they took a model trained on a large dataset of other X-ray images and trained it to use the same methods to detect lungs likely infected with COVID-19. They used several different machine learning methods, two of which resulted in a 95.6% and a 98.5% accuracy rating, respectively.

"Since X-rays are very fast and cheap, they can help to triage patients in places where the health care system has collapsed or in places that are far from major centers with access to more complex technologies," Albuquerque said. "This approach to detect and classify medical images automatically can assist doctors in identifying, measuring the severity and classifying the disease."

Next, Albuquerque said, the researchers plan to continue testing their method with larger datasets as they become available, with the ultimate goal of developing a free online platform for medical image classification.

For more information: www.ieee-jas.org


Related Content

News | Artificial Intelligence

May 31, 2023 — GE HealthCare announced US FDA 510(k) clearance of Precision DL – a new, revolutionary deep learning ...

Time May 31, 2023
arrow
News | Radiology Business

May 30, 2023 — Strategic Radiology (SR) welcomed 23-radiologist Radiology Associates of Eugene, OR, to the national ...

Time May 30, 2023
arrow
News | Radiology Business

May 26, 2023 — Siemens Healthineers and CommonSpirit Health have agreed to acquire Block Imaging. This new acquisition ...

Time May 26, 2023
arrow
News | Computed Tomography (CT)

May 26, 2023 — GE HealthCare, a leading medical technology innovator, announced today its largest ever CT deal in the ...

Time May 26, 2023
arrow
News | Pediatric Imaging

May 24, 2023 — A new advanced form of computed tomography (CT) imaging called photon-counting computed tomography (PCCT) ...

Time May 24, 2023
arrow
News | PET Imaging

May 22, 2023 — New research finds that the brains of otherwise healthy military personnel who are exposed to explosions ...

Time May 22, 2023
arrow
News | ACR

May 19, 2023 — The Radiology Leadership Institute (RLI) named Norman J. Beauchamp Jr., MD, MHS, FACR, Arl Van Moore Jr ...

Time May 19, 2023
arrow
News | Radiology Imaging

May 19, 2023 — Asymptomatic adults with a high accumulation of fat in their muscles, known as myosteatosis, are at an ...

Time May 19, 2023
arrow
News | Computed Tomography (CT)

May 18, 2023 — Royal Philips, a global leader in health technology, announced the launch of the Philips CT 3500, a new ...

Time May 18, 2023
arrow
News | Digital Radiography (DR)

May 18, 2023 — Carestream Health’s new, versatile DRX-LC Detector is designed to improve patient comfort, image quality ...

Time May 18, 2023
arrow
Subscribe Now