News | Coronavirus (COVID-19) | February 01, 2021

Integrating Deep Learning CT-scan Model Helps Predict Severity of COVID-19 Patients

Study finds significantly improved prognosis performance that when comparing AI-severity with 11 existing severity scores; AI-severity can therefore rapidly become a reference scoring approach

Kaplan–Meier curves for the high-risk individuals and the ones with low or medium risk according to AI-severity. The threshold to assign individuals into a high-risk group was the 2/3 quantile of the AI-severity score computed for patients of the KB development cohort. a Kaplan–Meier curves were obtained for the 150 leftover KB patients from the development cohort. b Kaplan–Meier curves were obtained for the 135 patients of the IGR validation cohort. p-values for the log-rank test were equal to 4.77e–07 (KB

Kaplan–Meier curves for the high-risk individuals and the ones with low or medium risk according to AI-severity. The threshold to assign individuals into a high-risk group was the 2/3 quantile of the AI-severity score computed for patients of the KB development cohort. a Kaplan–Meier curves were obtained for the 150 leftover KB patients from the development cohort. b Kaplan–Meier curves were obtained for the 135 patients of the IGR validation cohort. p-values for the log-rank test were equal to 4.77e–07 (KB) and 4.00e–12 (IGR). The two terciles used to determine threshold values for low-, medium-, and high-risk groups were equal to 0.187 and 0.375. Diamonds correspond to censoring of patients who were still hospitalized at the time when data ceased to be updated. The bands correspond to the sequence of the 95% confidence intervals of the survival probabilities for each day. KB Kremlin-Bicêtre hospital, IGR Institut Gustave Roussy hospital. Courtesy of Nature Communications.

February 1, 2021 — COVID-19 vaccine distribution has begun across the globe, while many countries are still struggling with the rampant rise of infections. Owkin, a French-American startup pioneering artificial intelligence (AI) and Federated Learning in medical research, has been focusing its COVID-19 research efforts on aspects of the pandemic that still require much public health attention, despite the arrival of an effective vaccine.

Efforts to support frontline health systems as they devote their resources to the influx of COVID-19 related hospitalizations, have resulted in the AI-Severity Score, published in Nature Communications. This machine learning model, trained on multimodal data sets that include computed tomography (CT) scans of the lungs (a routine procedure upon admission), is plug and play and able to predict the severity of a patient's disease prognosis with a performance that surpasses all other currently published score benchmarks. Use of these scores supports hospital resource management and planning, a sometimes overlooked function that, when managed well, saves lives. This research was made possible through a consortium, called ScanCovIA, made up of Institut Gustave Roussy, Kremlin-Bicêtre APHP, Owkin, and Digital Vision Center of CentraleSupélec and INRIA.

Additionally, Owkin has been developing other machine learning models to discover more coronavirus epitopes that are most likely to be effective in future vaccines As the virus continues to mutate, we don't yet know how long the current vaccines will remain efficacious or if, like the flu, they will require annual or semi annual development. Furthermore, it may be possible to develop vaccines for genes within the virus's DNA that are more stable, and less likely to mutate. Epitope prediction can speed vaccine development by narrowing the field of epitopes to test in the lab, and it can diversify our defenses against the virus's future mutations. Furthermore, these models can be deployed outside vaccine research; they can also be used in oncology research. The ultimate aim of machine learning for epitope discovery is to have a better understanding of the immune response--these features of the model have their place across the spectrum of precision medicine research.

For more information: www.owkin.com

Related Content

55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned. #COVIDvaccine #COVID19

55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned.

News | Breast Imaging | February 24, 2021
Findings indicate that PPC and GG are highly predictive of overall upstaging by PSMA PET/CT for patients with high-risk prostate cancer

Image courtesy of UCLA Health

News | PET-CT | February 23, 2021
February 23, 2021 — A...
icobrain cva allows the quantitative assessment of tissue perfusion by reporting the volume of core and perfusion lesion by quantifying Tmax abnormality and CBF abnormality together with the mismatch volume and ratio
News | Artificial Intelligence | February 23, 2021
February 23, 2021 — icometrix, world leader in imaging...
F-18 FES PET images of patients with ER+/PR+/HER2- invasive ductal carcinoma. Left panel: Progressive disease seen at the 8-week time-point in a patient on sequential therapy. Right panel: Stable disease through all 3 time-points, remaining on study therapy for 6.7 months until disease progression on combined vorinostat aromatase inhibitor therapy. Image created by Lanell M Peterson, Research Scientist, University of Washington Medical Oncology, Seattle WA.

F-18 FES PET images of patients with ER+/PR+/HER2- invasive ductal carcinoma. Left panel: Progressive disease seen at the 8-week time-point in a patient on sequential therapy. Right panel: Stable disease through all 3 time-points, remaining on study therapy for 6.7 months until disease progression on combined vorinostat aromatase inhibitor therapy. Image created by Lanell M Peterson, Research Scientist, University of Washington Medical Oncology, Seattle WA.

News | Molecular Imaging | February 22, 2021
February 22, 2021 — Molecular imaging
Dr Sahar Saleem placing the mummy in the CT scanner

Dr. Sahar Saleem placing the mummy in the CT scanner. Image courtesy of Sahar Saleem

News | Computed Tomography (CT) | February 22, 2021
February 22, 2021 — Modern medical technology is helping scholars tell a more nuanced story about the fate of an anci
Axial FLAIR MR image shows T2 prolongation in bilateral middle cerebellar peduncles (arrows). Findings were associated with restricted diffusion and areas of T1 hypointense signal without enhancement or abnormal susceptibility. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

Axial FLAIR MR image shows T2 prolongation in bilateral middle cerebellar peduncles (arrows). Findings were associated with restricted diffusion and areas of T1 hypointense signal without enhancement or abnormal susceptibility. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | February 22, 2021
February 22, 2021 — According to an...
Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in

Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in (a). The bottom row focuses on the detection of small calcifications, a key feature in DCIS. These are undetectable in (d), detected in (e), enhanced in the maximum intensity projection (MIP) image at the bottom of (f), and confirmed by histopathology in the top part of (f). The scale bar [shown in (b) and (e)] is the same for all images apart from (f), which has its own scale. Red arrows in (e) and (f) indicate the microcalcifications. Image courtesy of Professor Alessandro Olivo

News | Breast Imaging | February 22, 2021
February 22, 2021 — A new X-ray imaging scanne
GE Healthcare introduced its artificial intelligence (AI) automation features on its Voluson Swift ultrasound platform at the 2020 Radiological Society of North America (RSNA) virtual meeting. Features of this system include semi-automated contouring, auto identification of fetal anatomy and positioning on imaging. AI is seeing increasing integration in ultrasound systems from numerous vendors.

GE Healthcare introduced its artificial intelligence (AI) automation features on its Voluson Swift ultrasound platform at the 2020 Radiological Society of North America (RSNA) virtual meeting. Features of this system include semi-automated contouring, auto identification of fetal anatomy and positioning on imaging. AI is seeing increasing integration in ultrasound systems from numerous vendors.

Feature | Ultrasound Imaging | February 18, 2021 | By Dave Fornell, Editor
Recent advances in ultrasound image sy...
Example MR images from paediatric brain tumour patients. This first column shows T1-weighted images following the injection of gadolinium contrast agent. The second column shows T2-weighted images and the final column shows apparent diffusion coefficient maps calculated from diffusion-weighted images. (a–c) are taken from a patient with a Pilocytic Astrocytoma, (d–f) are from a patient with an Ependymoma and (g–i) were acquired from a patient with a Medulloblastoma.

Example MR images from paediatric brain tumour patients. This first column shows T1-weighted images following the injection of gadolinium contrast agent. The second column shows T2-weighted images and the final column shows apparent diffusion coefficient maps calculated from diffusion-weighted images. (ac) are taken from a patient with a Pilocytic Astrocytoma, (df) are from a patient with an Ependymoma and (gi) were acquired from a patient with a Medulloblastoma. Image courtesy of Nature Research Journal

News | Pediatric Imaging | February 17, 2021
February 17, 2021 — Diffusio...