News | CT Angiography (CTA) | July 24, 2019

WVU Medicine Installs First Alphenix 4D CT in the U.S.

Angiography configuration enhances workflow and opens doors for new interventional procedures at the facility

WVU Medicine Installs First Alphenix 4D CT in the U.S.

July 24, 2019 — The West Virginia University (WVU) Heart and Vascular Institute is the first hospital in the country to acquire the Alphenix 4D CT from Canon Medical Systems USA Inc. The system offers an angiography configuration to expand capabilities in interventional procedures and help advance patient care in the community. The configuration pairs the Alphenix Sky + C-arm and Hybrid Catheterization Tilt/Cradle Table for interventional procedures with the Aquilion One/Genesis Edition computed tomography (CT) system, allowing clinicians to efficiently plan, treat and verify in a single clinical setting.

The WVU Heart and Vascular Institute uses the Alphenix 4D CT to perform interventional procedures for a wide range of applications, including advanced neurointerventional work, and to calculate diagnoses for heart and vascular diseases. In addition, the system is helping clinicians confidently identify and treat gastrointestinal (GI) bleeds, tumor lesions, percutaneous embolization and chest hematomas, among other complications.

“As we looked to upgrade our interventional radiology equipment, we first had to determine what is driving healthcare and found that a large focus is on heart disease, vascular disease and cancer,” said Luke Marone, M.D., co-director, chief of vascular interventional services, WVU Heart and Vascular Institute. “Already, the system has helped our clinicians think strategically about how they can leverage new technology to expand the horizons of care we offer.”

The Alphenix 4D CT is part of Canon Medical’s suite of Collaborative Imaging tools which puts integrated imaging intelligence at the center of a patient’s journey. The initiative fuses multiple diagnostic imaging modalities with clinical applications to deliver holistic, optimized patient information to healthcare providers at the point of care.

For more information: www.us.medical.canon

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Getty Images

Feature | Coronavirus (COVID-19) | April 07, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2  The first of three clinical scenarios presented to the panel with final recommendations. Mild features refer to absence of significant pulmonary dysfunction or damage. Pre-test probability is based upon background prevalence of disease and may be further modified by individual’s exposure risk. The absence of resource constraints corresponds to sufficient availability of personnel, personal protective equipment, COVID-19 testing, hospital beds, and/or ve

 The first of three clinical scenarios presented to the panel with final recommendations. Mild features refer to absence of significant pulmonary dysfunction or damage. Pre-test probability is based upon background prevalence of disease and may be further modified by individual’s exposure risk. The absence of resource constraints corresponds to sufficient availability of personnel, personal protective equipment, COVID-19 testing, hospital beds, and/or ventilators with the need to rapidly triage patients. Contextual detail and considerations for imaging with CXR (chest radiography) versus CT (computed tomography) are presented in the text. (Pos=positive, Neg=negative, Mod=moderate). [Although not covered by this scenario and not shown in the figure, in the presence of significant resources constraints, there is no role for imaging of patients with mild features of COVID-19.] Image courtesy of the journal Radiology

News | Coronavirus (COVID-19) | April 07, 2020
April 7, 2020 — A multinational consens...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Chest CT findings of pediatric patients with COVID-19 on transaxial images. (a) Male, 2 months old, 2 days after symptom onset. Patchy ground-glass opacities GGO in the right lower lobe

Chest CT findings of pediatric patients with COVID-19 on transaxial images. Male, 2 months old, 2 days after symptom onset. Patchy ground-glass opacities GGO in the right lower lobe. Image courtesy of Radiology: Cardiothoracic Imaging

News | Coronavirus (COVID-19) | April 06, 2020
April 6, 2020 — Children and teenagers with COVID-19...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Sonogram taken under rib cage shows liver (grey) with curved diaphragm-lung border (white). Arrows point to vertical B lines (white) demonstrating diseased lung tissue. The more B lines the worse the disease. Healing is measured by reduction in the number of B lines.

Sonogram taken under rib cage shows liver (grey) with curved diaphragm-lung border (white). Arrows point to vertical B lines (white) demonstrating diseased lung tissue. The more B lines the worse the disease. Healing is measured by reduction in the number of B lines.

News | Coronavirus (COVID-19) | April 06, 2020
April 6, 2020 — Robert L.
Recommended best practices for nuclear imaging departments under the COVIF-19 pandemic have been issues by the ASNC and SNMMI. #COVID19 #ASNC #SNMMI #Coronavirus #SARScov2
News | Coronavirus (COVID-19) | April 03, 2020
April 3, 2020 — A new guidance document on best practices to maintain safety and minimize contamination in nuclear im
An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal.

An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal. Photo by Dave Fornell

Feature | Radiology Imaging | April 02, 2020 | By Katie Caron
A new year — and decade — offers the opportunity to reflect on the advancements and challenges of years gone by and p
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus

Getty Images

Feature | Coronavirus (COVID-19) | April 02, 2020 | Jilan Liu and HIMSS Greater China Team
Information technologies have played a pivotal role in China’s response to the novel coronavirus...