News | Lung Cancer | March 11, 2016

Researchers Make Major Breakthrough in New Lung MRI Scan Technology

Clean energy combustion technology has been used to successfully hyperpolarize krypton gas for MRI scanning of the lungs

lung disease, MRI scans, contrast agent, hyperpolarized krypton

March 11, 2016 — New scanning technology which will give a much clearer picture of lung disease has taken a major step forward thanks to scientists at The University of Nottingham.

The experts at the Sir Peter Mansfield Imaging Centre have developed a process using specially treated krypton gas as an inhalable contrast agent to make the spaces inside the lungs show up on a magnetic resonance imaging (MRI) scan. It is hoped the new process will eventually allow doctors to virtually see inside the lungs of patients.

Traditional MRI uses hydrogen protons in the body as molecular targets to give a picture of tissue, but this does not give a detailed picture of the lungs because they are full of air. Recent technological developments have led to a novel imaging methodology called inhaled hyperpolarized gas MRI that uses lasers to 'hyperpolarize' a noble (inert) gas which aligns (polarizes) the nuclei of the gas so it shows up on an MRI scan.

The work will make 3-D imaging using 'atomic spies' like helium, xenon or krypton possible in a single breath hold by the patient. Nottingham has pioneered hyperpolarized krypton MRI and is currently advancing this technology towards the clinical approval processes.

Hyperpolarized MRI research has been trying to overcome a problem with these noble gases retaining their hyperpolarized state for long enough for the gas to be inhaled, held in the lungs and scanned. Now in a paper published in the Proceedings of the National Academy of Sciences, the Nottingham team has developed a new technique to generate hyperpolarized krypton gas at high purity, a step that will significantly facilitate the use of this new contrast agent for pulmonary MRI.

Chair in Translational Imaging at the Sir Peter Mansfield Imaging Centre, Prof. Thomas Meersmann, said: "It is particularly demanding to retain the hyperpolarized state of krypton during preparation of this contrast agent. We have solved a problem by using a process that is usually associated with clean energy-related sciences. It's called catalytic hydrogen combustion. To hyperpolarize the krypton-83 gas we diluted it in molecular hydrogen gas for the laser pumping process. After successful laser treatment the hydrogen gas is mixed with molecular oxygen and literally exploded it away in a safe and controlled fashion through a catalyzed combustion reaction.

"Remarkably, the hyperpolarized state of krypton-83 survives the combustion event. Water vapor, the sole product of the 'clean' hydrogen reaction, is easily removed through condensation, leaving behind the purified laser-polarized krypton-83 gas diluted only by small remaining quantities of harmless water vapor. This development significantly improves the potential usefulness of laser-pumped krypton-83 as MRI contrast agent for clinical applications."

This new technique can also be used to hyperpolarize another useful noble gas, xenon-129, and may lead to a cheaper and easier production of this contrast agent.

As part of a recent Medical Research Council funding award, hyperpolarized krypton-83 is currently being developed for whole body MRI at high magnetic field strength in the Sir Peter Mansfield Imaging Centre's large 7 Tesla scanner. Studies will be carried out first on healthy volunteers before progressing to patient trials at a later phase.

For more information: www.pnas.org

Related Content

Lunit Unveiling AI-Based Mammography Solution at RSNA 2018
News | Mammography | November 15, 2018
Medical artificial intelligence (AI) software company Lunit will be returning to the 104th Radiological Society of...
Canon Medical Receives FDA Clearance for Vantage Orian 1.5T MRI
Technology | Magnetic Resonance Imaging (MRI) | November 15, 2018
Canon Medical Systems USA Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) on its new...
Voyageur Minerals to Begin Manufacturing Barium Contrast Products With Chief Medical Supply
News | Contrast Media | November 14, 2018
Voyageur Minerals Ltd. signed a joint venture agreement with Chief Medical Supply Ltd (CM) of Calgary, Alberta to...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for radiation therapy displayed for the first time since gaining FDA clearance in 2018. It was displayed at the American Society for Radiotherapy and Oncology (ASTRO) 2018 annual meeting. Read more about this system at ASTRO 2018. #ASTRO18 #ASTRO2018
360 Photos | 360 View Photos | November 07, 2018
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for...
Fans of Opposing Soccer Teams Perceive Games Differently

Image courtesy of University of York

News | Neuro Imaging | October 25, 2018
Scientists have scanned the brains of die-hard soccer fans to find out why supporters of rival teams often have very...
IMRIS, Siemens Strengthen Collaboration in Hybrid OR Neurosurgical Market
News | Hybrid OR | October 24, 2018
IMRIS, Deerfield Imaging, in partnership with Siemens Healthineers, announced a strengthened collaboration to advance...
Carotid Artery MRI Improves Cardiovascular Disease Risk Assessment
News | Magnetic Resonance Imaging (MRI) | October 23, 2018
Magnetic resonance imaging (MRI) measurements of wall thickness in the carotid arteries improve cardiovascular disease...
Patients whose cancer has not spread far past the lungs may benefit from targeting tumor sites with radiation or surgery after initial treatment, according to ASTRO study
News | ASTRO | October 21, 2018
Adding radiation therapy or surgery to systemic therapy for stage IV lung cancer patients whose cancer has spread to