Technology | Advanced Visualization | January 12, 2017

Philips Announces New Augmented-Reality Surgical Navigation Technology

Combination of 3-D X-ray and optical imaging provides surgeons with a unique augmented-reality view of the inside and outside of a patient during spine, cranial and trauma surgical procedures

Philips, augmented-reality surgical navigation technology, spine surgery

January 12, 2017 — Philips announced the development of what it calls an industry-first augmented-reality surgical navigation technology designed to help surgeons perform image-guided open and minimally-invasive spine surgery. The addition of this new augmented reality technology will further widen the scope of Philips hybrid operating room (OR) solutions to other fast-growing areas of image-guided surgery including spine, cranial and trauma procedures.

Spine surgery was traditionally an ‘open surgery’ procedure, accessing the affected area via a large incision so that surgeons could physically see and touch the patient’s spine in order to position implants such as pedicle screws. In recent years, however, there has been a definite shift to the use of minimally-invasive techniques, according to Philips, performed by manipulating surgical tools through small incisions in the patient’s skin in order to minimize blood loss and soft tissue damage, and consequently reduce postoperative pain. Due to inherently reduced visibility of the spine during these procedures, surgeons have to rely on real-time imaging and navigation solutions to guide their surgical tools and implants. The same is true for minimally-invasive cranial surgery and surgery on complex trauma fractures.

Philips is developing a new augmented-reality surgical navigation technology that will add additional capabilities to the company’s low-dose X-ray system. The technology uses high-resolution optical cameras mounted on the flat panel X-ray detector to image the surface of the patient. It then combines the external view captured by the cameras and the internal 3-D view of the patient acquired by the X-ray system to construct a 3-D augmented-reality view of the patient’s external and internal anatomy. This real-time 3-D view of the patient’s spine in relation to the incision sites in the skin aims to improve procedure planning, surgical tool navigation and implant accuracy, as well as reducing procedure times.

As part of a joint clinical research program, Philips hybrid ORs with this new capability will be installed in a network of 10 clinical collaborators to advance the technology.

The results of the first pre-clinical study on the technology have been published in The Spine Journal, as a result of a collaboration between Philips, Karolinska University Hospital (Stockholm, Sweden) and the Cincinnati Children’s Hospital Medical Center (Cincinnati, USA). The technology was shown to be significantly better with respect to overall accuracy, compared to pedicle screw placement without the aid of Philips’ augmented-reality surgical navigation technology (85 percent vs 64 percent, p<0.05).

“This new technology allows us to intraoperatively make a high-resolution 3-D image of the patient’s spine, plan the optimal device path, and subsequently place pedicle screws using the system’s fully-automatic augmented-reality navigation,” said Dr. Skúlason of the Landspitali University Hospital, Reykjavik, Iceland. “We can also check the overall result in 3-D in the OR without the need to move the patient to a CT [computed tomography] scanner. And all this can be done without any radiation exposure to the surgeon and with minimal dose to the patient.”

The technology was also recently presented at the North American Spine Society Annual Meeting in Boston by Adrian Elmi-Terander, M.D., of Karolinska University Hospital, Sweden.

“Since we no longer do open spine surgery, we depend on imaging and image quality,” commented Prof. Seekamp from the Universitätsklinikum Schleswig-Holstein in Kiel, Germany. “I had expected the operations to take a little longer in the hybrid OR, but in fact just the opposite is true.”

Dr. Bemelman, trauma surgeon at the Elisabeth Hospital in Tilburg, the Netherlands, said “We teamed up with vascular, neuro and orthopedic surgeons to create this multi-purpose OR to realize a high room utilization, provide state-of-the-art care and reduce the overall cost for the hospital.”

For more information: www.medical.philips.com

Related Content

Technology | Orthopedic Imaging | June 13, 2018
EOS imaging announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its hipEOS...
Reduced hippocampal volume on MRI

This figure shows reduced hippocampal volume over the course of 6 years as seen on progressive volumetric analysis and also coronal MRI evaluations (arrows).Progressive volume loss in the mesial temporal lobe on MRI is a characteristic imaging feature of AD. This patient was a case of Alzheimer’s Dementia.

 

News | Neuro Imaging | June 12, 2018
According to a UCLA Medical Center study, a new technology shows the potential to help doctors better determine when...
High Prevalence of Atherosclerosis Found in Lower Risk Patients
News | Magnetic Resonance Imaging (MRI) | June 08, 2018
Whole-body magnetic resonance angiography (MRA) found a surprisingly high prevalence of atherosclerosis in people...
FDA Issues Proposed Order to Reclassify Certain Radiological Medical Image Analyzers
News | Computer-Aided Detection Software | June 01, 2018
The U.S. Food and Drug Administration (FDA) is issuing a proposed order to reclassify certain radiological medical...
Researchers Use Radiomics to Overcome False Positives in Lung Cancer CT Screening
News | Advanced Visualization | May 29, 2018
A team of researchers including investigators from Mayo Clinic has identified a technology to address the problem of...
Intelerad Launches AI Initiative for Imaging Workflow Intelligence and Analytics
News | Artificial Intelligence | May 29, 2018
Intelerad Medical Systems announced the launch of its artificial intelligence (AI) initiative along with the expansion...
Sponsored Content | Videos | Artificial Intelligence | May 25, 2018
Change Healthcare is looking at how to apply AI into enterprise imaging by using algorithms to change data into knowl
Guerbet Launches Pair of Microcatheters for Interventional Radiology Procedures
Technology | Interventional Radiology | May 23, 2018
Guerbet LLC USA announced the upcoming launch of SeQure and DraKon, two novel microcatheters for tumor and vascular...
FAST Study Demonstrates High Diagnostic Accuracy of CAAS vFFR
Technology | Angiography | May 22, 2018
Pie Medical Imaging announced that clinical data on its CAAS vFFR (Cardiovascular Angiographic Analysis Systems for...
Melania Trump in hospital to undergo an interventional radiology (IR) catheter embolization procedure in her kidneys. Angiogram of a kidney.

First Lady Melania Trump in hospital to undergo an interventional radiology (IR) catheter embolization procedure in her kidneys. The left image is an example of a kidney angiogram to highlight the renal blood vessels during an interventional procedure.

News | Interventional Radiology | May 15, 2018 | Dave Fornell
May 15, 2018 — U.S.
Overlay Init