Technology | Advanced Visualization | January 12, 2017

Philips Announces New Augmented-Reality Surgical Navigation Technology

Combination of 3-D X-ray and optical imaging provides surgeons with a unique augmented-reality view of the inside and outside of a patient during spine, cranial and trauma surgical procedures

Philips, augmented-reality surgical navigation technology, spine surgery

January 12, 2017 — Philips announced the development of what it calls an industry-first augmented-reality surgical navigation technology designed to help surgeons perform image-guided open and minimally-invasive spine surgery. The addition of this new augmented reality technology will further widen the scope of Philips hybrid operating room (OR) solutions to other fast-growing areas of image-guided surgery including spine, cranial and trauma procedures.

Spine surgery was traditionally an ‘open surgery’ procedure, accessing the affected area via a large incision so that surgeons could physically see and touch the patient’s spine in order to position implants such as pedicle screws. In recent years, however, there has been a definite shift to the use of minimally-invasive techniques, according to Philips, performed by manipulating surgical tools through small incisions in the patient’s skin in order to minimize blood loss and soft tissue damage, and consequently reduce postoperative pain. Due to inherently reduced visibility of the spine during these procedures, surgeons have to rely on real-time imaging and navigation solutions to guide their surgical tools and implants. The same is true for minimally-invasive cranial surgery and surgery on complex trauma fractures.

Philips is developing a new augmented-reality surgical navigation technology that will add additional capabilities to the company’s low-dose X-ray system. The technology uses high-resolution optical cameras mounted on the flat panel X-ray detector to image the surface of the patient. It then combines the external view captured by the cameras and the internal 3-D view of the patient acquired by the X-ray system to construct a 3-D augmented-reality view of the patient’s external and internal anatomy. This real-time 3-D view of the patient’s spine in relation to the incision sites in the skin aims to improve procedure planning, surgical tool navigation and implant accuracy, as well as reducing procedure times.

As part of a joint clinical research program, Philips hybrid ORs with this new capability will be installed in a network of 10 clinical collaborators to advance the technology.

The results of the first pre-clinical study on the technology have been published in The Spine Journal, as a result of a collaboration between Philips, Karolinska University Hospital (Stockholm, Sweden) and the Cincinnati Children’s Hospital Medical Center (Cincinnati, USA). The technology was shown to be significantly better with respect to overall accuracy, compared to pedicle screw placement without the aid of Philips’ augmented-reality surgical navigation technology (85 percent vs 64 percent, p<0.05).

“This new technology allows us to intraoperatively make a high-resolution 3-D image of the patient’s spine, plan the optimal device path, and subsequently place pedicle screws using the system’s fully-automatic augmented-reality navigation,” said Dr. Skúlason of the Landspitali University Hospital, Reykjavik, Iceland. “We can also check the overall result in 3-D in the OR without the need to move the patient to a CT [computed tomography] scanner. And all this can be done without any radiation exposure to the surgeon and with minimal dose to the patient.”

The technology was also recently presented at the North American Spine Society Annual Meeting in Boston by Adrian Elmi-Terander, M.D., of Karolinska University Hospital, Sweden.

“Since we no longer do open spine surgery, we depend on imaging and image quality,” commented Prof. Seekamp from the Universitätsklinikum Schleswig-Holstein in Kiel, Germany. “I had expected the operations to take a little longer in the hybrid OR, but in fact just the opposite is true.”

Dr. Bemelman, trauma surgeon at the Elisabeth Hospital in Tilburg, the Netherlands, said “We teamed up with vascular, neuro and orthopedic surgeons to create this multi-purpose OR to realize a high room utilization, provide state-of-the-art care and reduce the overall cost for the hospital.”

For more information: www.medical.philips.com

Related Content

FDA Clears Ion Endoluminal Lung Biopsy System
Technology | Interventional Radiology | February 20, 2019
The U.S. Food and Drug Administration (FDA) cleared the Ion endoluminal system from Intuitive Surgical Inc. to enable...
MRI and Computer Modeling Reveals How Wrist Bones Move

Using fast MRI, UC Davis researchers scanned left and right wrists of men and women and used the data to build computer models of the movement of wrist bones. The data could help understand wrist injuries such as carpal tunnel syndrome. Image courtesy of Brent Foster and Abhijit Chaudhari, UC Davis.

News | Magnetic Resonance Imaging (MRI) | February 19, 2019
In a just-published Journal of Biomechanics article, the researchers proved a longtime assumption about individuals'...
FDA Clears Mirada Medical's Simplicit90y Dosimetry Software
News | Interventional Radiology | February 18, 2019
February 18, 2019 — Mirada Medical Ltd announced U.S.
Philips Launches Zenition Mobile C-arm Platform
Technology | Mobile C-Arms | February 18, 2019
Philips announced the launch of Philips Zenition, its new mobile C-arm imaging platform. Mobile C-arms are X-ray...
Synopsys Releases Simpleware ScanIP Medical Software for 3-D Printing
Technology | Medical 3-D Printing | February 14, 2019
Smart technology company Synopsys recently announced the release of the Synopsys Simpleware ScanIP Medical edition for...
Medivis Launches SurgicalAR Augmented Reality Platform
Technology | Advanced Visualization | February 14, 2019
Medical imaging and visualization company Medivis officially unveiled SurgicalAR, its augmented reality (AR) technology...
Standards-based interoperability is the key to the use of components critically important to Vital Images’ vision of enterprise imaging

Standards-based interoperability is the key to the use of components critically important to Vital Images’ vision of enterprise imaging. Graphic courtesy of Vital Images

Feature | Artificial Intelligence | February 11, 2019 | By Greg Freiherr
Vital Images has reconciled its vision of the distant future with near term reality.
Videos | Angiography | February 08, 2019
This is an example of an arterial venous malformation (AVM) in the brain imaged on a...
Fujifilm Launches Latest Synapse 3D Version at HIMSS 2019

The new Intravoxel Incoherent Motion (IVIM) MR application in Synapse 3D

Technology | Advanced Visualization | February 08, 2019
Fujifilm Medical Systems U.S.A. will debut the latest version of its Synapse 3D solution at the Healthcare Information...
Sponsored Content | Videos | Information Technology | February 07, 2019
In this video Johann Fernando, Ph.D., Chief Operating Officer of...