News | PET-CT | March 29, 2021

PET/CT Shows Stressed Brain Linked to Broken Heart

The study looked at brain scans using F-fluorodeoxyglucose positron emission tomography/computed tomography to assess brain activity before TTS develops, analyzing data on 104 people with an average age of 68 years, 72% of whom were women

 

Scan of brain of someone who did not develop TTS. Image courtesy of European Heart Journal

March 29, 2021 — Heightened activity in the brain, caused by stressful events, is linked to the risk of developing a rare and sometimes fatal heart condition, according to research published in the European Heart Journal [1].

The study found the greater the activity in nerve cells in the amygdala region of the brain, the sooner the condition known as Takotsubo syndrome (TTS) can develop. The researchers suggest that interventions to lower this stress-related brain activity could help to reduce the risk of developing TTS; these could include drug treatments or techniques for lowering stress.

TTS, also known as "broken heart" syndrome, is characterised by a sudden temporary weakening of the heart muscles that causes the left ventricle of the heart to balloon out at the bottom while the neck remains narrow, creating a shape resembling a Japanese octopus trap, from which it gets its name. Since this relatively rare condition was first described in 1990, evidence has suggested that it is typically triggered by episodes of severe emotional distress, such as grief, anger or fear, or reactions to happy or joyful events. Patients develop chest pains and breathlessness, and it can lead to heart attacks and death. TTS is more common in women with only 10% of cases occurring in men. [2]

The amygdala is the part of the brain that controls emotions, motivation, learning and memory. It is also involved in the control of the autonomic nervous system and regulating heart function.

"The study suggests that the increased stress-associated neurobiological activity in the amygdala, which is present years before TTS occurs, may play an important role in its development and may predict the timing of the syndrome. It may prime an individual for a heightened acute stress response that culminates in TTS," said Ahmed Tawakol, M.D., co-director of the Cardiovascular Imaging Research Center at Massachusetts General Hospital and Harvard Medical School (Boston, USA), who led the study.

"We also identified a significant relationship between stress-associated brain activity and bone marrow activity in these individuals. Together, the findings provide insights into a potential mechanism that may contribute to the 'heart-brain connection'."

In the first study to look at brain scans using F-fluorodeoxyglucose positron emission tomography/computed tomography (PET-CT) to assess brain activity before TTS develops, Tawakol and colleagues analyzed data on 104 people with an average age of 68 years, 72% of whom were women.

The patients had undergone scans at Massachusetts General Hospital (Boston, USA) between 2005 and 2019. Most of them had the scans to see if they had cancer and the scans also assessed the activity of blood cells in bone marrow. The researchers matched 41 people who went on to develop TTS between six months and five years after the scan with 63 who did not. The interval between the scan, the onset of TTs, last follow-up or death was an average (median) of 2.5 years for the 104 patients.

Tawakol said: "Areas of the brain that have higher metabolic activity tend to be in greater use. Hence, higher activity in the stress-associated tissues of the brain suggests that the individual has a more active response to stress. Similarly, higher activity in the bone marrow reflects greater bone marrow metabolism. The PET/CT scans produce images that reflect the distribution of glucose metabolism. The brain images thereby yield a map of brain metabolic activity: the higher the values, the greater the activity in those brain regions."

The researchers found that people who went on to develop TTS had higher stress-related amygdalar activity on initial scanning (measured as a ratio of amygdalar activity to activity of brain regions that counter stress) compared to individuals who did not subsequently develop TTS. Further, the higher the amygdalar signal, the greater the risk of developing TTS. Among the 41 patients who developed TTS, the average interval between the scan and TTS was 0.9 months, whereas among the control group of 63 patients, the average interval between the scan and last follow-up or death was 2.9 years.

"It was notable that among the 41 patients who developed TTS, the top 15% with the very highest amygdalar activity developed TTS within a year of imaging, while those with less elevated activity developed TTS several years later," said Tawakol.

He said future studies should investigate whether reducing stress-related brain activity could decrease the chances of TTS recurring among patients who have experienced TTS previously.

"These findings add to evidence of the adverse effect of stress-related biology on the cardiovascular system. Findings such as these underscore the need for more study into the impact of stress reduction or drug interventions targeting these brain regions on heart health. In the meantime, when encountering a patient with high chronic stress, clinicians could reasonably consider the possibility that alleviation of stress might result in benefits to the cardiovascular system."

The process by which stress induces TTS is not well understood but may involve a multi-organ mechanism starting with activation of the stress-sensitive tissues of the brain. This brain activity in turn triggers several further events, including release of stress hormones, activation of the sympathetic nervous system and release of inflammatory cells, each of which can contribute to the development of TTS.

Limitations of the study include that it was a single-centre, retrospective study that consisted mainly of patients with a diagnosis of cancer, a known TTS risk factor, which may limit the generalisability of the findings. The researchers were unable to measure instantaneous changes in brain activity in response to a stressful event that led to TTS and so cannot directly show a causal relationship. Nor were they able to measure changes in activity in other regions of the brain, which could also play a role.

For more information: www.escardio.org

 

[1] "Stress-associated neurobiological activity associates with the risk for and timing of subsequent Takotsubo syndrome", by Azar Radfar et al. European Heart Journal. doi:10.1093/eurheartj/ehab029

[2] TTS affects less than 3% of people who suffer a heart attack and tends to occur between the ages of 60-75.

[3] "Brain-heart connection in Takotsubo syndrome before onset", by Hideaki Suzuki, Satoshi Yasuda, Hiroaki Shimokawa. European Heart Journal. doi:10.1093/eurheartj/ehab026

Related Content

A cardiac MRI of athletes who had COVID-19 is seven times more effective in detecting inflammation of the heart than symptom-based testing, according to a study led by researchers at The Ohio State University Wexner Medical Center and College of Medicine with 12 other Big Ten programs.

Cardiac Magnetic Resonance Imaging in Athletes With Clinical and Subclinical Myocarditis A-D, Athlete A with subclinical possible myocarditis was asymptomatic with normal electrocardiogram (ECG), echocardiogram, and high-sensitivity troponin findings. A, T2 mapping showing elevated T2 in basal-mid inferolateral wall in short axis view. B, late gadolinium enhancement (LGE) in the basal inferolateral wall in short axis view. C, Postcontrast steady state-free precession (SSFP) images showing contrast uptake in the basal-mid inferolateral wall in short axis view. D, LGE in the inferolateral wall in 3-chamber view. E-H, Athlete B with subclinical probable myocarditis was asymptomatic with normal ECG, normal echocardiogram, and elevated high-sensitivity troponin findings. E, T2 mapping showing elevated T2 in the anteroseptal wall in short axis view. F, LGE in the anteroseptal wall in 3-chamber view. G, T2 mapping showing elevated T2 in the anteroseptal wall in 3-chamber view. F, Postcontrast SSFP image showing pericardial effusion in short axis view. I-K, Athlete C with clinical myocarditis and chest pain, dyspnea, abnormal ECG, normal echocardiogram, and normal troponin findings. I, T2 mapping showing elevated T2 in the lateral wall short axis view. J, Postcontrast SSFP images showing contrast uptake in midlateral wall in short axis view. K, LGE in the epicardial midlateral wall in short axis view. L-N, Athlete D with clinical myocarditis, chest pain, abnormal ECG, echocardiogram, and troponin findings. L, T1 mapping showing elevated native T1 in midlateral wall in short axis view. M, T2 mapping showing elevated T2 in the midlateral wall in short axis view. N, LGE in the epicardial midlateral wall in short axis view. IR indicates inferior right view; IRP, inferior, right, posterior view; PLI, posterior, left, inferior view; SL, superior left view; SLA, superior, left, anterior view. Image courtesy of JAMA Cardiol. Published online May 27, 2021. doi:10.1001/jamacardio.2021.2065

News | Cardiac Imaging | June 15, 2021
June 15, 2021 — A...
Rensselaer algorithm can identify risk of cardiovascular disease using lung cancer scan #CT
News | Computed Tomography (CT) | June 14, 2021
June 14, 2021 — Heart disease and cancer are the ...
A new imaging technique has the potential to detect neurological disorders — such as Alzheimer's disease — at their earliest stages, enabling physicians to diagnose and treat patients more quickly. Termed super-resolution, the imaging methodology combines position emission tomography (PET) with an external motion tracking device to create highly detailed images of the brain.

Result of the Hoffman brain phantom study. Top row: same PET slice reconstructed with A) 2mm static OSEM, B) 1mm static OSEM, C) proposed SR method and D) corresponding CT slice (note that the CT image can be treated as a high-resolution reference). Middle row: zoom on region of interest for corresponding images. Bottom row: Line profiles for corresponding data. Image created by Y Chemli, et al., Gordon Center for Medical Imaging: Department of Radiology Massachusetts General Hospital, Harvard Medical School, Boston, MA.

News | PET Imaging | June 14, 2021
June 14, 2021 — A new imaging technique has the potential to detect neurological disorders — such as...
Positron emission tomography (PET) using a 68Ga-labeled fibroblast activation protein inhibitor (FAPI) can noninvasively identify and monitor pulmonary fibrosis, according to research presented at the Society of Nuclear Medicine and Molecular Imaging 2021 Annual Meeting.

A) Axial CT images through the mouse lungs at 7 and 14 days after intratracheal administration of bleomycin or saline (as a control), demonstrating increased lung fibrosis in the bleomycin group (white arrows). (B) CT attenuation histograms in Hounsfield units (HU) after lung segmentation demonstrate increased attenuation in the lungs in the bleomycin group than the control group (p <0.05), consistent with increasing fibrosis (n=3). (C) Representative axial PET/CT fusion images at 20 and 60 min demonstrating increased FAPI uptake in the lungs of the bleomycin group (white arrows) with no significant uptake in the control group (yellow arrows). (D) Time-activity curve of lung uptake ROI analysis demonstrating higher FAPI uptake in the lungs of the bleomycin group than the control (p < 0.05), 14 days after bleomycin (n=3). (E) Ex vivo biodistribution data of lung tissue demonstrating higher radiotracer uptake in the lungs of the bleomycin group than the control (n=3). *p<0.05, **p<0.01. Image created by CA Ferreira et al., University of Wisconsin-Madison, Madison, WI.

News | PET-CT | June 14, 2021
June 14, 2021 — Positron emission tomography (PET) using
Prediction performance of DL compared to quantitative measures and Kaplan-Meier curves for quartiles of DL. Image created by Singh et al., Cedars-Sinai Medical Center, Los Angeles, CA.

Prediction performance of DL compared to quantitative measures and Kaplan-Meier curves for quartiles of DL. Image created by Singh et al., Cedars-Sinai Medical Center, Los Angeles, CA.

News | SPECT Imaging | June 14, 2021
June 14, 2021 — An advanced artificial i...
Accuray Incorporated announced the company has received CE Mark certification for its ClearRT helical fan-beam kVCT imaging capability.
News | Radiation Therapy | June 11, 2021
June 11, 2021 — Accuray Incorporated announced the company has received CE Mark certification for its...
The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

News | X-Ray | June 10, 2021
June 10, 2021 — Engineers at Duke University have demonstrated a prot