News | Neuro Imaging | November 14, 2018

Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis

AI applied to FDG-PET scans detects early signs of Alzheimer’s with 100 percent sensitivity more than six years prior to final diagnosis on average

Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis

November 14, 2018 — Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according to a study published in the journal Radiology.1

Timely diagnosis of Alzheimer’s disease is extremely important, as treatments and interventions are more effective early in the course of the disease. However, early diagnosis has proven to be challenging. Research has linked the disease process to changes in metabolism, as shown by glucose uptake in certain regions of the brain, but these changes can be difficult to recognize.

“Differences in the pattern of glucose uptake in the brain are very subtle and diffuse,” said study co-author Jae Ho Sohn, M.D., from the Radiology & Biomedical Imaging Department at the University of California San Francisco (UCSF). “People are good at finding specific biomarkers of disease, but metabolic changes represent a more global and subtle process.”

The study’s senior author, Benjamin Franc, M.D., from UCSF, approached Sohn and University of California, Berkeley, undergraduate student Yiming Ding through the Big Data in Radiology (BDRAD) research group, a multidisciplinary team of physicians and engineers focusing on radiological data science. Franc was interested in applying deep learning, a type of AI in which machines learn by example much like humans do, to find changes in brain metabolism predictive of Alzheimer’s disease.

The researchers trained the deep learning algorithm on an imaging technology known as 18-F-fluorodeoxyglucose positron emission tomography (FDG-PET). In an FDG-PET scan, FDG, a radioactive glucose compound, is injected into the blood. PET scans can then measure the uptake of FDG in brain cells, an indicator of metabolic activity.

The researchers had access to data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a major multi-site study focused on clinical trials to improve prevention and treatment of this disease. The ADNI dataset included more than 2,100 FDG-PET brain images from 1,002 patients. Researchers trained the deep learning algorithm on 90 percent of the dataset and then tested it on the remaining 10 percent of the dataset. Through deep learning, the algorithm was able to teach itself metabolic patterns that corresponded to Alzheimer’s disease.

Finally, the researchers tested the algorithm on an independent set of 40 imaging exams from 40 patients that it had never studied. The algorithm achieved 100 percent sensitivity at detecting the disease an average of more than six years prior to the final diagnosis.

“We were very pleased with the algorithm’s performance,” Sohn said. “It was able to predict every single case that advanced to Alzheimer’s disease.”

Although he cautioned that their independent test set was small and needs further validation with a larger multi-institutional prospective study, Sohn said that the algorithm could be a useful tool to complement the work of radiologists — especially in conjunction with other biochemical and imaging tests — in providing an opportunity for early therapeutic intervention.

“If we diagnose Alzheimer’s disease when all the symptoms have manifested, the brain volume loss is so significant that it’s too late to intervene,” he said. “If we can detect it earlier, that’s an opportunity for investigators to potentially find better ways to slow down or even halt the disease process.”

Future research directions include training the deep learning algorithm to look for patterns associated with the accumulation of beta-amyloid and tau proteins, abnormal protein clumps and tangles in the brain that are markers specific to Alzheimer’s disease, according to UCSF’s Youngho Seo, Ph.D., who served as one of the faculty advisors of the study.

“If FDG-PET with AI can predict Alzheimer’s disease this early, beta-amyloid plaque and tau protein PET imaging can possibly add another dimension of important predictive power,” he said.

For more information: www.pubs.rsna.org/journal/radiology

Reference

1. Ding Y., Sohn J.H., Kawczynski M.G., et al. A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease Using 18F-FDG PET of the Brain. Radiology, Nov. 6, 2018. https://doi.org/10.1148/radiol.2018180958

Related Content

Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

News | Radiology Business | February 22, 2019
Imaging Technology News has been recognized with three award nominations from the Jesse H.
Agfa Receives FDA Clearance for DR 800 With Tomosynthesis
Technology | Digital Radiography (DR) | February 21, 2019
Agfa Healthcare has received U.S. Food and Drug Administration (FDA) 510(k) clearance for its DR 800 multipurpose...
Welch Road Imaging Integrates RamSoft PowerServer RIS/PACS With openDoctor
News | PACS Accessories | February 20, 2019
Welch Road Imaging in California recently became the first RamSoft customer to integrate openDoctor with its...
Sponsored Content | Videos | Enterprise Imaging | February 20, 2019
At RSNA 2018, Philips Healthcare introduced Performance Bridge as an integral part of its IntelliSpace Enterprise Edi
Philips Earns FDA Clearance for DigitalDiagnost C90 DR System
Technology | Digital Radiography (DR) | February 20, 2019
Philips announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market the...
Philips Launches Zenition Mobile C-arm Platform
Technology | Mobile C-Arms | February 18, 2019
Philips announced the launch of Philips Zenition, its new mobile C-arm imaging platform. Mobile C-arms are X-ray...
Amazon Comprehend Medical Brings Medical Language Processing to Healthcare
News | Artificial Intelligence | February 15, 2019
Amazon recently announced Amazon Comprehend Medical, a new HIPAA-eligible machine learning service that allows...
Videos | Radiation Therapy | February 15, 2019
ITN Associate Editor Jeff Zagoudis speaks with Vinai Gondi, M.D., director of research and CNS neuro-oncology at the
Fujifilm Exhibits Enterprise Imaging Solutions and Artificial Intelligence Initiative at HIMSS 2019
News | Enterprise Imaging | February 15, 2019
Fujifilm Medical Systems U.S.A. Inc. and Fujifilm SonoSite Inc. showcased their enterprise imaging and informatics...
IBM Watson Health Announces New AI Collaborations With Leading Medical Centers
News | Artificial Intelligence | February 14, 2019
IBM Watson Health announced plans to make a 10-year, $50 million investment in research collaborations with two...