News | Neuro Imaging | November 14, 2018

Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis

AI applied to FDG-PET scans detects early signs of Alzheimer’s with 100 percent sensitivity more than six years prior to final diagnosis on average

Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis

November 14, 2018 — Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according to a study published in the journal Radiology.1

Timely diagnosis of Alzheimer’s disease is extremely important, as treatments and interventions are more effective early in the course of the disease. However, early diagnosis has proven to be challenging. Research has linked the disease process to changes in metabolism, as shown by glucose uptake in certain regions of the brain, but these changes can be difficult to recognize.

“Differences in the pattern of glucose uptake in the brain are very subtle and diffuse,” said study co-author Jae Ho Sohn, M.D., from the Radiology & Biomedical Imaging Department at the University of California San Francisco (UCSF). “People are good at finding specific biomarkers of disease, but metabolic changes represent a more global and subtle process.”

The study’s senior author, Benjamin Franc, M.D., from UCSF, approached Sohn and University of California, Berkeley, undergraduate student Yiming Ding through the Big Data in Radiology (BDRAD) research group, a multidisciplinary team of physicians and engineers focusing on radiological data science. Franc was interested in applying deep learning, a type of AI in which machines learn by example much like humans do, to find changes in brain metabolism predictive of Alzheimer’s disease.

The researchers trained the deep learning algorithm on an imaging technology known as 18-F-fluorodeoxyglucose positron emission tomography (FDG-PET). In an FDG-PET scan, FDG, a radioactive glucose compound, is injected into the blood. PET scans can then measure the uptake of FDG in brain cells, an indicator of metabolic activity.

The researchers had access to data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a major multi-site study focused on clinical trials to improve prevention and treatment of this disease. The ADNI dataset included more than 2,100 FDG-PET brain images from 1,002 patients. Researchers trained the deep learning algorithm on 90 percent of the dataset and then tested it on the remaining 10 percent of the dataset. Through deep learning, the algorithm was able to teach itself metabolic patterns that corresponded to Alzheimer’s disease.

Finally, the researchers tested the algorithm on an independent set of 40 imaging exams from 40 patients that it had never studied. The algorithm achieved 100 percent sensitivity at detecting the disease an average of more than six years prior to the final diagnosis.

“We were very pleased with the algorithm’s performance,” Sohn said. “It was able to predict every single case that advanced to Alzheimer’s disease.”

Although he cautioned that their independent test set was small and needs further validation with a larger multi-institutional prospective study, Sohn said that the algorithm could be a useful tool to complement the work of radiologists — especially in conjunction with other biochemical and imaging tests — in providing an opportunity for early therapeutic intervention.

“If we diagnose Alzheimer’s disease when all the symptoms have manifested, the brain volume loss is so significant that it’s too late to intervene,” he said. “If we can detect it earlier, that’s an opportunity for investigators to potentially find better ways to slow down or even halt the disease process.”

Future research directions include training the deep learning algorithm to look for patterns associated with the accumulation of beta-amyloid and tau proteins, abnormal protein clumps and tangles in the brain that are markers specific to Alzheimer’s disease, according to UCSF’s Youngho Seo, Ph.D., who served as one of the faculty advisors of the study.

“If FDG-PET with AI can predict Alzheimer’s disease this early, beta-amyloid plaque and tau protein PET imaging can possibly add another dimension of important predictive power,” he said.

For more information: www.pubs.rsna.org/journal/radiology

Reference

1. Ding Y., Sohn J.H., Kawczynski M.G., et al. A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease Using 18F-FDG PET of the Brain. Radiology, Nov. 6, 2018. https://doi.org/10.1148/radiol.2018180958

Related Content

A doctor reading #CXR scans using #SenseCare-Chest #DR Pro #diagnostic #software.

A doctor reading CXR scans using SenseCare-Chest DR Pro diagnostic software.

News | Artificial Intelligence | April 14, 2021
April 14, 2021 — SenseTime, a world-leading...
The U.S. Food and Drug Administration (#FDA) authorized marketing of #Medtronic's #GIGenius, the first device that uses #artificialintelligence (#AI) based on #machinelearning to assist #clinicians in detecting #lesions (such as #polyps or suspected tumors) in the #colon in real time during a c#olonoscopy.

The GI Genius intelligent endoscopy module works in real-time, automatically identifying and marking (with a green box) abnormalities consistent with colorectal polyps, including small flat polyps.

News | Artificial Intelligence | April 12, 2021
IV contrast-enhanced 2-mSv 4-mm-thick transverse and coronal (b) CT images show inflamed diverticula (arrows), segmental colonic wall thickening, and adjacent pericolic fat stranding. Image courtesy of the American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

IV contrast-enhanced 2-mSv 4-mm-thick transverse and coronal (b) CT images show inflamed diverticula (arrows), segmental colonic wall thickening, and adjacent pericolic fat stranding. Image courtesy of the American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Computed Tomography (CT) | April 09, 2021
April 9, 2021 — According to an open-acc...
Varian announced it is collaborating with Google Cloud to build an advanced artificial intelligence (AI) based diagnostic platform to aid in the fight against cancer. Varian and Google Cloud AI embarked on a deployment journey, using Neural Architecture Search (NAS) technology via Google Cloud AI Platform, to create AI models for organ segmentation — a crucial and labor-intensive step in radiation oncology that can be a bottleneck in the cancer treatment clinical workflow.
News | Artificial Intelligence | April 08, 2021
April 8, 2021 — Varian announced it is collaborating with Google...
Brain tumors edged out by artificial intelligence: VBrain applies auto-contouring to the three most common types of brain tumors: brain metastasis, meningioma and acoustic neuroma.

Brain tumors edged out by artificial intelligence: VBrain applies auto-contouring to the three most common types of brain tumors: brain metastasis, meningioma and acoustic neuroma.

News | Artificial Intelligence | April 07, 2021
April 7, 2021 — Vysioneer, a leader in a...
Axial chest CT examination in a 54-year-old participant. A, On the axial noncontrast chest CT image, the pectoralis muscle (PM) area was segmented and measured in the section above the aortic arch. B, The subcutaneous adipose tissue (SAT) area as the area between the PM and the skin surface on the same section was also measured and the attenuation of pixels in the SAT area was used to determine the individualized threshold for the intermuscular adipose tissue (IMAT). C, The IMAT within the PM was segmented

Axial chest CT examination in a 54-year-old participant. A, On the axial noncontrast chest CT image, the pectoralis muscle (PM) area was segmented and measured in the section above the aortic arch. B, The subcutaneous adipose tissue (SAT) area as the area between the PM and the skin surface on the same section was also measured and the attenuation of pixels in the SAT area was used to determine the individualized threshold for the intermuscular adipose tissue (IMAT). C, The IMAT within the PM was segmented as the areas with Hounsfield units below this threshold for the IMAT (arrowheads). Image courtesy of the Radiological Society of North America

News | Computed Tomography (CT) | April 07, 2021
April 7, 2021 — Body composition information derived from routine chest...
Ultrasound is an invaluable diagnostic tool for the early detection of breast cancer, but the classification of lesions is sometimes challenging and time consuming. Could artificial intelligence hold the answer to solving these problems? Graphic courtesy of Chinese Medical Journal

Ultrasound is an invaluable diagnostic tool for the early detection of breast cancer, but the classification of lesions is sometimes challenging and time consuming. Could artificial intelligence hold the answer to solving these problems? Graphic courtesy of Chinese Medical Journal

News | Artificial Intelligence | April 06, 2021
April 6, 2021 — In 2020, the International Agency for Research on...