News | Artificial Intelligence | October 23, 2019

NVIDIA and King's College London Debut First Privacy-preserving Federated Learning System

Federated learning is a type of deep learning or artificial intelligence that distributes training data across multiple locations

NVIDIA and King's College London Debut First Privacy-preserving Federated Learning System

Image courtesy of NVIDIA

October 23, 2019 — To help advance medical research while preserving data privacy and improving patient outcomes for brain tumor identification, NVIDIA researchers in collaboration with King’s College London researchers recently announced the introduction of the first privacy-preserving federated learning system for medical image analysis. NVIDIA is working with King’s College London and French startup Owkin to enable federated learning for the newly established London Medical Imaging and AI Centre for Value Based Healthcare.

This new paper was presented at the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), one of the world’s top conferences on medical imaging, Oct. 13-17 in Shenzhen, China. In the work, NVIDIA and King’s College London researchers describe in detail how they developed their technique.

Federated learning is a learning paradigm that allows developers and organizations to train a centralized deep neural network (DNN) with training data distributed across multiple locations. This makes it possible for organizations to collaborate on a shared model, without needing to directly share any clinical data. 

“Federated learning allows collaborative and decentralized training of neural networks without sharing the patient data,” the researchers stated in their paper. “Each node trains its own local model and, periodically, submits it to a parameter server. The server accumulates and aggregates the individual contributions to yield a global model, which is then shared with all nodes.”

Although federated learning can provide high security in terms of privacy, there are still ways to reconstruct data by model inversion, the researchers explained. To help make federated learning even safer, the researchers investigate the feasibility of using the ε-differential privacy framework, a way to formally define privacy loss, to protect patient and institutional data with a strong privacy guarantee. To ensure patient privacy is priority, differential privacy and other state-of-the-art privacy protection techniques are being built into the Owkin architecture.

The experiments for this breakthrough were performed on brain tumor segmentation data from the BraTS 2018 dataset. The BraTS 2018 dataset contains magnetic resonance imaging (MRI) scans of 285 patients with brain tumors.

The dataset is used here for evaluating federated learning algorithms on the multi-modal and multi-class segmentation task. On the client side, the team adapted a state-of-the-art training pipeline originally designed for data-centralized training and implemented it as part of the NVIDIA Clara Train SDK.

For training and inference, the team used NVIDIA V100 Tensor Core GPUs.

When comparing federated learning to a data-centralized system, the proposed approach can achieve a comparable segmentation performance without sharing institutional data. 

Moreover, the experimental results show a natural tradeoff between privacy protection and the quality of the trained model. Still, with the sparse vector technique, the federated learning system can provide rigorous privacy protection with only a reasonably small cost in model performances.

Deep learning is a technique for automatically extracting knowledge from medical data, the NVIDIA team explained. Federated learning has the potential of effectively aggregating knowledge across institutions learned locally from private data, thus further improving the accuracy, robustness, and generalization ability of the deep models, they added.

“This research is an important step towards the deployment of secure federated learning, which will enable data-driven precision medicine at large scale,” the NVIDIA researchers stated.

For more information: www.nvidia.com

Related Content

Sponsored Content | Videos | Mammography | January 24, 2020
Imaging Technology News Contributing Editor Greg Freiherr interviewed...
he U.S. Food and Drug Administration (FDA) has issued a final order to reclassify medical image analyzers applied to mammography breast cancer, ultrasound breast lesions, radiograph lung nodules and radiograph dental caries detection, postamendments class III devices (regulated under product code MYN), into class II (special controls), subject to premarket notification

Image courtesy of iCAD

News | Computer-Aided Detection Software | January 22, 2020
January 22, 2020 — The U.S.
Medical imaging technology company Oxipit announced partnership with Swiss medical distribution company Healthcare Konnect to bring ChestEye AI imaging suite to healthcare institutions in Nigeria
News | Artificial Intelligence | January 22, 2020
January 22, 2020 — Medical imaging technology company Oxipit ann
Hitachi Healthcare Americas announced that it will create a new dedicated research and development facility within its North American headquarters facility in Twinsburg, Ohio
News | Radiology Business | January 21, 2020
January 21, 2020 — Hitachi Healthcare Americas announced that it will create a new dedicated research and development
Sponsored Content | Videos | Enterprise Imaging | January 20, 2020
GE Healthcare's iCenter is a cloud-based management software that provides 24/7 visibility to customers' visual and o
This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.   #RSNA #

This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.

Feature | RSNA | January 20, 2020 | Dave Fornell, Editor
Here are images of some of the newest new medical imaging technologies displayed on the expo floor at the ...
Gadolinium based contrast dye in brain MRI

Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

News | Contrast Media | January 17, 2020
January 17, 2020 — Bracco Diagnostics Inc., the U.
Konica Minolta Business Solutions, U.S.A., Inc. (Konica Minolta) announced its status as a Google Cloud Premier Partner.
News | Archive Cloud Storage | January 14, 2020
January 14, 2020 — ...