News | Artificial Intelligence | October 23, 2019

NVIDIA and King's College London Debut First Privacy-preserving Federated Learning System

Federated learning is a type of deep learning or artificial intelligence that distributes training data across multiple locations

NVIDIA and King's College London Debut First Privacy-preserving Federated Learning System

Image courtesy of NVIDIA

October 23, 2019 — To help advance medical research while preserving data privacy and improving patient outcomes for brain tumor identification, NVIDIA researchers in collaboration with King’s College London researchers recently announced the introduction of the first privacy-preserving federated learning system for medical image analysis. NVIDIA is working with King’s College London and French startup Owkin to enable federated learning for the newly established London Medical Imaging and AI Centre for Value Based Healthcare.

This new paper was presented at the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), one of the world’s top conferences on medical imaging, Oct. 13-17 in Shenzhen, China. In the work, NVIDIA and King’s College London researchers describe in detail how they developed their technique.

Federated learning is a learning paradigm that allows developers and organizations to train a centralized deep neural network (DNN) with training data distributed across multiple locations. This makes it possible for organizations to collaborate on a shared model, without needing to directly share any clinical data. 

“Federated learning allows collaborative and decentralized training of neural networks without sharing the patient data,” the researchers stated in their paper. “Each node trains its own local model and, periodically, submits it to a parameter server. The server accumulates and aggregates the individual contributions to yield a global model, which is then shared with all nodes.”

Although federated learning can provide high security in terms of privacy, there are still ways to reconstruct data by model inversion, the researchers explained. To help make federated learning even safer, the researchers investigate the feasibility of using the ε-differential privacy framework, a way to formally define privacy loss, to protect patient and institutional data with a strong privacy guarantee. To ensure patient privacy is priority, differential privacy and other state-of-the-art privacy protection techniques are being built into the Owkin architecture.

The experiments for this breakthrough were performed on brain tumor segmentation data from the BraTS 2018 dataset. The BraTS 2018 dataset contains magnetic resonance imaging (MRI) scans of 285 patients with brain tumors.

The dataset is used here for evaluating federated learning algorithms on the multi-modal and multi-class segmentation task. On the client side, the team adapted a state-of-the-art training pipeline originally designed for data-centralized training and implemented it as part of the NVIDIA Clara Train SDK.

For training and inference, the team used NVIDIA V100 Tensor Core GPUs.

When comparing federated learning to a data-centralized system, the proposed approach can achieve a comparable segmentation performance without sharing institutional data. 

Moreover, the experimental results show a natural tradeoff between privacy protection and the quality of the trained model. Still, with the sparse vector technique, the federated learning system can provide rigorous privacy protection with only a reasonably small cost in model performances.

Deep learning is a technique for automatically extracting knowledge from medical data, the NVIDIA team explained. Federated learning has the potential of effectively aggregating knowledge across institutions learned locally from private data, thus further improving the accuracy, robustness, and generalization ability of the deep models, they added.

“This research is an important step towards the deployment of secure federated learning, which will enable data-driven precision medicine at large scale,” the NVIDIA researchers stated.

For more information: www.nvidia.com

Related Content

The RIS market is expected to reach $979.1 M by 2025

Image courtesy of Agfa

News | Information Technology | December 13, 2019
December 13, 2019 — According to a new study released by Rese...
Philips launches Azurion with FlexArm to set new standard for the future of image-guided procedures

Philips launches Azurion with FlexArm to set new standard for the future of image-guided procedures.

News | Radiology Imaging | December 12, 2019
December 12, 2019 — Philips and the Regional Medical Center
Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI.

Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI. Graphic courtesy of the Radiological Society of North America.

News | Artificial Intelligence | December 11, 2019
December 11, 2019 — Deep learning, a type of arti...
EMR patient portal on a smartphone
News | Electronic Medical Records (EMR) | December 11, 2019
December 11, 2019 — Despite the numerous benefits associated with patients accessing their medical records, a new stu
CT_Pediatric_Scan_Philips_Vereos_CT_RSNA 2016

Image courtesy of Philips Healthcare

News | Pediatric Imaging | December 10, 2019
December 10, 2019 — More than half of people who received...
Damage from concussion alters the way information is transmitted between the two halves of the brain, according to a new study presented today at the annual meeting of the Radiological Society of North America (RSNA).

Image courtesy of RSNA

News | Clinical Trials | December 10, 2019
December 10, 2019 — Damage from...