News | Radiation Therapy | April 29, 2019

Novel Software Improves Accuracy of Radiation Therapy for Pediatric Cancer Treatment

Study examines use of Sun Nuclear’s PerFraction software to automate adjustment of treatment planning

Novel Software Improves Accuracy of Radiation Therapy for Pediatric Cancer Treatment

April 29, 2019 — A new report by Arthur Olch, Ph.D., highlights use of specialized software at Children’s Hospital Los Angeles (CHLA) that could advance treatment accuracy of radiation oncology for pediatric cancer patients.

During radiation therapy, patient position must be stable from session to session to ensure radiation beams are properly targeting the tumor. For this reason, X-ray images are taken before each treatment. Radiation therapists can use this information to reorient the patient so that the position is exactly the same each time. Doctors at CHLA are taking this already rigorous process one step further. From early in its development Olch, a radiation physicist, has been evaluating the use of new software to advance quality assurance in radiation therapy. In a recent publication, he highlights the use of this technological advance to aid in the treatment of pediatric cancers.

Radiation therapy uses a beam of targeted X-rays that kill cancer cells over the course of treatment. After the beam passes through the patient, it is captured on an imaging panel. Olch and his team make use of the information carried by these beams, called exit images, using the automated software. These images contain important information about the exact dose being delivered to the tumor and surrounding tissues and can be compared to the planned doses. Up to 20 images might be generated per treatment session. With treatments occurring every day for several weeks, this makes for an unwieldy amount of data to manually process. Now, radiation oncology staff have a tool that will do this in seconds. The program automates not only image capture but also analysis.

Analyzing these images provides new information that allows further fine tuning of the radiation beams and patient position from session to session. This, said Olch, gives radiation oncologists more information that can be used to account for anatomy changes in real time. "If a patient gains or loses weight, their dimensions change" he said. "Likewise, as the tumor shrinks, radiation beams need to take a different trajectory."

Adjustments are routinely made as a standard of care, but by utilizing the latest technological advances, CHLA radiation oncologists are redefining this standard. "We have a very comprehensive quality assurance strategy," said Olch, "and this software is an important addition to our already high standard of care."

Olch is also a professor of clinical radiation oncology at the University of Southern California (USC). He co-authored the publication with Kyle O'Meara and Kenneth Wong, M.D. Olch provides consulting services to Sun Nuclear Corp., who provided PerFraction software but did not fund the study.

For more information: www.advancesradonc.org

Reference

1. Olch A.J., O’Meara K., Wong K. First Report of the Clinical use of a Commercial Automated System for Daily Patient QA using EPID Exit Images. Advances in Radiation Oncology, published online April 12, 2019. https://doi.org/10.1016/j.adro.2019.04.001

Related Content

Stronger Distribution Networks to Bolster Radiotherapy Patient Positioning Accessories
News | Patient Positioning Radiation Therapy | July 19, 2019
A recent study projects global market revenues for radiotherapy patient positioning accessories will exceed revenues of...
IBM collected a dataset of 52,936 images from 13,234 women who underwent at least one mammogram between 2013 and 2017.

IBM collected a dataset of 52,936 images from 13,234 women who underwent at least one mammogram between 2013 and 2017, and who had health records for at least one year prior to the mammogram. The algorithm was trained on 9,611 mammograms. Image courtesy of Radiology.

Feature | Artificial Intelligence | July 19, 2019 | Michal Chorev
Breast cancer is the global leading cause of cancer-related deaths in women, and the most commonly diagnosed cancer...
CMS Proposes New Alternative Payment Model for Radiation Oncology
News | Radiation Oncology | July 17, 2019
The Centers for Medicare and Medicaid Services (CMS) issued a proposal for an advanced alternative payment model (APM)...
AAPM 2019 Features More Than 40 Presentations on ViewRay's MRIdian MRI-guided Radiotherapy
News | Image Guided Radiation Therapy (IGRT) | July 16, 2019
ViewRay Inc. announced that the company's MRIdian System is the focus of more than 40 abstracts selected by the...
RaySearch Releases Version 3A of RayCare Oncology Information System
Technology | Oncology Information Management Systems (OIMS) | July 15, 2019
RaySearch has released RayCare 3A, a new version of the next-generation oncology information system (OIS). RayCare is...
IBA Launches Monte Carlo Patient QA for Varian Halcyon at AAPM 2019
Technology | Quality Assurance (QA) | July 10, 2019
IBA announced the launch of the latest functionality of the SciMoCa Monte Carlo Patient QA solution at the 61st annual...
Researchers Use Artificial Intelligence to Deliver Personalized Radiation Therapy
News | Radiation Therapy | July 09, 2019
New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to...
The Beamscan 3-D water phantom with the Varian Halcyon radiotherapy system

The Beamscan 3-D water phantom with the Varian Halcyon radiotherapy system. Image courtesy of PTW.

News | Quality Assurance (QA) | July 08, 2019
At this year’s American Association of Physicists in Medicine (AAPM) show, July 14-18 in San Antonio, Texas, PTW will...
Aktina Medical Partners With Elekta for Global Distribution of Interlocking SRS Cones
News | Radiation Therapy | July 05, 2019
Aktina Medical announced that Elekta Instrument AB, based in Sweden, will offer and distribute the Aktina line of...