News | PET Imaging | April 10, 2018

Novel PET Agent Could Help Guide Therapy for Brain Diseases

Study findings could help select appropriate drug doses for Parkinson’s, Alzheimer’s and multiple sclerosis, among other diseases

Novel PET Agent Could Help Guide Therapy for Brain Diseases

Rat brain 11C‐Me‐NB1 PET images (0‐60 min) superimposed on an MRI template. Credit: SD Krämer et al., ETH Zurich, Zurich, Switzerland

April 10, 2018 — Researchers have developed a new imaging agent that could help guide and assess treatments for people with various neurological diseases, including Alzheimer’s, Parkinson’s and multiple sclerosis. The agent, which is used in positron emission tomography (PET) scans, targets receptors in nerve cells in the brain that are involved in learning and memory. The study is featured in the April issue of The Journal of Nuclear Medicine.

Swiss and German scientists developed the new PET radioligand, 11C‐Me‐NB1, for imaging GluN1/GluN2B-containing N-methyl-D-aspartate (NMDA) receptors (a class of glutamate receptor) in nerve cells. When NMDA receptors are activated, there is an increase of calcium (Ca2+) in the cells, but Ca2+ levels that are too high can cause cell death. Medications that block NMDA receptors are therefore used for the treatment of a wide range of neurological conditions from depression, neuropathic pain and schizophrenia to ischemic stroke and diseases causing dementia.

“The significance of the work lies in the fact that we have for the first time developed a useful PET radioligand that can be applied to image the GluN2B receptor subunit of the NMDA receptor complex in humans,” explained Simon M. Ametamey, Ph.D., of the Institute of Pharmaceutical Sciences, ETH Zurich, in Switzerland. "The availability of such a PET radioligand would not only help to better understand the role of NMDA receptors in the pathophysiology of the many brain diseases in which the NMDA receptor is implicated, but it would also help to select appropriate doses of clinically relevant GluN2B receptor candidate drugs. Administering the right dose of the drugs to patients will help minimize side-effects and lead to improvement in the efficacy of the drugs.”

For the study, 11C-Me-NB1 was used in live rats to investigate the dose and effectiveness of eliprodil, a drug that blocks the NMDA GluN2B receptor. PET scans with the new radioligand successfully showed that the receptors are fully occupied at neuroprotective doses of eliprodil. The new radioligand also provided imaging of receptor crosstalk between Sigma-1 receptors, which modulate calcium signaling, and GluN2B-containing NMDA receptors.

Ametamey pointed out, “These results mean that a new radiopharmaceutical tool is now available for studying brain disorders such as Alzheimer`s disease, Parkinson`s disease and multiple sclerosis, among others. It joins the list of existing PET radiopharmaceuticals used in imaging studies to investigate and understand underlying causes of these brain disorders.” He added, “Furthermore, future imaging studies using this new radioligand would throw more light on the involvement of NMDA receptors, specifically the GluN2B receptors, in normal physiological processes such as learning and memory, as well as accelerate the development of GluN2B candidate drugs currently under development.”

For more information: www.jnm.snmjournals.org

 

Related Content

Mobile Stroke Unit Gets Patients Quicker Treatment Than Traditional Ambulance

Image courtesy of UTHealth McGovern Medical School

News | Stroke | August 16, 2019
Every second counts for stroke patients, as studies show they can lose up to 27 million brain cells per minute....
ADHD Medication May Affect Brain Development in Children

Images of regions of interest (colored lines) in the white matter skeleton representation. Data from left and right anterior thalamic radiation (ATR) were averaged. Image courtesy of C. Bouziane et al.

News | Neuro Imaging | August 16, 2019
A drug used to treat attention-deficit/hyperactivity disorder (ADHD) appears to affect development of the brain’s...
United Imaging Announces First U.S. Clinical Installation of uExplorer Total-body PET/CT
News | PET-CT | August 15, 2019
United Imaging announced that its uExplorer total-body positron emission tomography/computed tomography (PET/CT) system...
Synaptive Medical Launches Modus Plan With Automated Tractography Segmentation
Technology | Neuro Imaging | August 07, 2019
Synaptive Medical announced the U.S. launch and availability of Modus Plan featuring BrightMatter AutoSeg. This release...
ASRT Supports Radiopharmaceutical Reimbursement Bill
News | Radiopharmaceuticals and Tracers | August 02, 2019
The American Society of Radiologic Technologists (ASRT) announced its support for House Resolution (HR) 3772, a measure...
International Multidisciplinary Group Publishes Recommendations for Personalized HCC Treatment With Y90 TheraSphere
News | Interventional Radiology | July 31, 2019
New consensus recommendations for personalized treatment for hepatocellular carcinoma (HCC) with BTG’s TheraSphere have...
NorthStar Medical Radioisotopes Awarded $30 Million by U.S. Department of Energy
News | Radiopharmaceuticals and Tracers | July 26, 2019
NorthStar Medical Radioisotopes LLC has been awarded $15 million in a cooperative agreement with the U.S. Department of...
NorthStar Medical Radioisotopes Completes Construction on Beloit, Wis. Molybdenum-99 Processing Facility
News | Radiopharmaceuticals and Tracers | July 16, 2019
NorthStar Medical Radioisotopes LLC  announced completion of construction on its 20,000-square-foot molybdenum-99 (Mo-...
Delta T1 Maps Provide Quantitative, Automated Solution to Assess Brain Tumor Burden
News | Neuro Imaging | July 05, 2019
Imaging Biometrics LLC (IB) a subsidiary of IQ-AI Ltd., is highlighting a recently published study in the American...
Bracco Imaging Acquires Blue Earth Diagnostics
News | Radiopharmaceuticals and Tracers | July 01, 2019
Bracco Imaging S.p.A. has signed a definitive agreement to acquire Blue Earth Diagnostics, a molecular imaging company...