News | SPECT Imaging | November 08, 2019

New X-ray Technology Could Revolutionize How Doctors Identify Abnormalities

Image by Dr. Manuel González Reyes from Pixabay

Image by Dr. Manuel González Reyes from Pixabay 

November 8, 2019 — Using ground-breaking technology, researchers at the University of Maryland, Baltimore County (UMBC) and University of Baltimore (UMB) are testing a new method of X-ray imaging that uses color to identify microfractures in bones. Microfractures were previously impossible to see using standard X-ray imaging. The findings associated with this advancement in color (spectral) CT (computed tomography) imaging are published in Advanced Functional Materials.

Since the discovery of X-rays in 1895, the basics of the technology have remained consistent. Doctors and scientists use them to see dense materials, like bones, but the technology's capabilities have been limited. Dipanjan Pan, Ph.D., professor of chemical, biochemical and environmental engineering UMBC, and professor of radiology at UMB, is the corresponding author of this new study. Looking ahead to the next generation of X-ray technology, he asked, "How can we detect a bone microcrack, something that is not visible using X-ray imaging?"

Pan explains that to examine this question, his lab developed nanoparticles that navigate and attach specifically to areas where microcracks exist. He likes to call them "GPS particles." They started conducting this research at the University of Illinois Urbana-Champaign. The researchers have programmed the particles to latch onto the correct area of the microcrack. Once the particles attach to microcracks, they remain there, which is crucial to the imaging process.

The particles contain the element hafnium. A new X-ray-based technique developed by a New Zealand-based company MARS then take CT images of the body and the hafnium particles appear in color. This provides a very clear image of where the bone microcracks are located.

Hafnium is used because its composition makes it detectable to X-rays, generating a signal that can then be used to image the cracks. Pan's lab showed that hafnium is stable enough to be used in testing involving living creatures, and can be excreted safely from the body. The lab has not yet begun testing on humans, but the technology to do so may be available as soon as 2020.

As for other applications for spectral CT imaging with this hafnium breakthrough, the research suggests that this methodology could be used to detect much more serious problems. For example, in order to determine whether a person has a blockage in their heart, doctors often will perform a stress test to detect abnormalities, which comes with a significant amount of risk. One day in the near future, doctors may be able to use spectral CT to determine whether there is a blockage in organs.

"Regular CT does not have a soft-tissue contrast. It cannot tell you where your blood vessels are. Spectral CT can help solve that problem," Pan explained. He notes that although more research is needed to begin using spectral CT in this way, he anticipates that it will be a "tremendous" new tool for radiologists. Fatemeh Ostadhossein, Ph.D., a recent graduate of the Pan lab, was first author on this study.

Related Content

Nanox secures $26M supported by strategic investment from Foxconn, unveiling the Startek-inspired AI Biobed for early detection
News | X-Ray | January 16, 2020
January 16, 2020 — Nanox, an innovative medical imaging techn
Carestream’s X-ray digital tomosynthesis functionality creates three-dimensional datasets from digital radiography (DR) that can be scrolled through similar to computed tomography (CT) imaging. It received 510(k) clearance from the U.S. Food and Drug Administration (FDA) in January 2020. Digital tomosynthesis uses a single sweep of X-ray exposures and streamlines operator workflow by separating the process of DT exposure acquisition from image volume formation.
News | Digital Radiography (DR) | January 15, 2020
January 15, 2020 — Carestream’s X-ray digital tomosynthesis (DT) functionality, which creates three-dimensional datas
Videos | RSNA | January 13, 2020
ITN Editor Dave Fornell takes a tour of some of the most innovative new medical imaging technologies displayed on the
Professor Samer Ezziddin, M.D., from Saarland University/Saarland University Hospital.

Professor Samer Ezziddin, M.D., from Saarland University/Saarland University Hospital. Image courtesy of Saarland University/Thorsten Mohr

 

News | Prostate Cancer | January 13, 2020
January 13, 2020 — When a non-scientist tries to imagine a scientist, the image that often arises is one of a somewha
The study found that DBN laws helped some women understand they had increased breast density, but not that breast density is associated with a higher risk of breast cancer or that dense breasts limit the ability of mammograms to detect cancer
News | Breast Density | January 09, 2020
January 9, 2020 — A new study suggests that state-mandated notifications on...
Sponsored Content | Videos | Digital Radiography (DR) | January 06, 2020
An experienced technologist and two Agfa executives talk about what distinguishes the new Agfa 100s.
Sponsored Content | Videos | Computed Tomography (CT) | January 06, 2020
Hitachi announced the FDA clearance of its newest CT – Scenaria View – at RSNA2019.