News | December 15, 2014

Technique can be used for ultrasound imaging, as well as therapeutically

ultrasound

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these so-called \"aberrating layers.\"


Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these so-called "aberrating layers."

"We've designed complementary metamaterials that will make it easier for medical professionals to use ultrasound for diagnostic or therapeutic applications, such as monitoring blood flow in the brain or to treat brain tumors," said Tarry Chen Shen, a Ph.D. student at NC State and lead author of a paper on the work. "This has been difficult in the past because the skull distorts the ultrasound's acoustic field."

"These metamaterials could also be used in industrial settings," said Yun Jing, Ph.D., an assistant professor of mechanical and aerospace engineering at NC State and senior author of the paper. "For example, it would allow you to use ultrasound to detect cracks in airplane wings under the wing's metal 'skin.'"

Ultrasound imaging works by emitting high frequency acoustic waves. When those waves bounce off an object, they return to the ultrasound equipment, which translates the waves into an image. But some materials, such as bone or metal, have physical characteristics that block or distort ultrasound's acoustic waves. These materials are called aberrating layers. The researchers addressed this problem by designing customized metamaterial structures that take into account the acoustic properties of the aberrating layer and offsetting them. The metamaterial structure uses a series of membranes and small tubes to achieve the desired acoustic characteristics.

The researchers tested the technique using computer simulations and are in the process of developing and testing a physical prototype.

In simulations, only 28 percent of ultrasound wave energy makes it past an aberrating layer of bone when the metamaterial structure is not in place. But with the metamaterial structure, the simulation shows that 88 percent of ultrasound wave energy passes through the aberrating layer. "In effect, it's as if the aberrating layer isn't even there," Jing said.

 


Related Content

News | Point-of-Care Ultrasound (POCUS)

July 24, 2025 — Fujifilm Sonosite, Inc., a leader in point-of-care ultrasound (POCUS) solutions, has announced a new ...

Time July 24, 2025
arrow
News | FDA

July 8, 2025 — Mendaera, Inc., a healthcare technology company focused on developing robotics that can be deployed ...

Time July 08, 2025
arrow
News | Point-of-Care Ultrasound (POCUS)

June 17, 2025 — Royal Philips has announced the global launch of the Flash Ultrasound System 5100 POC — a new point-of ...

Time June 19, 2025
arrow
News | Lung Imaging

June 18, 2025 — Exo recently announced that now included on its Exo Iris is the first ever FDA 510(k) cleared AI for ...

Time June 18, 2025
arrow
News | Artificial Intelligence

April 16, 2025 — An artificial intelligence (AI) program trained to review images from a common medical test can detect ...

Time April 16, 2025
arrow
News | Ultrasound Women's Health

April 11, 2025 — Contrast-enhanced ultrasound (CEUS) is a safe and accurate diagnostic imaging option for pregnant women ...

Time April 11, 2025
arrow
News | Focused Ultrasound Therapy

March 31, 2025 — Neuropathic pain affects up to 10 percent of the global population and can be challenging to manage ...

Time April 02, 2025
arrow
News | Breast Imaging

March 20, 2025 — GE HealthCare has launched Invenia Automated Breast Ultrasound (ABUS) Premium, the latest 3D ultrasound ...

Time March 21, 2025
arrow
News | X-Ray

March 18, 2025 — GE HealthCare recently announced a collaboration with NVIDIA expanding the existing relationship ...

Time March 19, 2025
arrow
News | Breast Imaging

Feb. 26, 2025 — iCAD, Inc. a provider of clinically proven AI-powered cancer detection solutions, and Koios Medical, a ...

Time March 03, 2025
arrow
Subscribe Now