News | July 20, 2010

New CT Technology Reduces Radiation Dose for CTA Scans

July 20, 2010 – New dual source CT technology allows a radiation dose of as low as one millisievert (mSv) for computed tomography angiography (CTA) scans, Siemens announced last week at the 2010 Annual Scientific Meeting of the Society of Cardiovascular Computed Tomography (SCCT) in Las Vegas. At SCCT, Somatom Definition Flash CT scanner users also showed how they use the system to display the coronary vessels, as well as the aorta, within one scan.

Recently, cardiologists have been using the Somatom Definition Flash to plan the procedure for one of the newest therapy methods for valvular heart disease: transcatheter aortic valve implantation (TAVI). Prior to this minimally invasive intervention, physicians had to examine the heart’s anatomy closely. This demand is also supported by the cardiovascular CT applications of the imaging software syngo.via. With automated processes, these applications can spare the cardiologists many manual steps that before were necessary – for instance, to measure the vessels.

“Somatom Definition Flash enables us to significantly reduce CTA radiation dose in clinical routine into the sub-mSv range for the vast majority of patients,” said Jörg Hausleiter, M.D., cardiologist and director of the intensive care unit at the German Heart Center in Munich, Germany.

Hausleiter and his colleagues have examined 60 to 70 percent of their patients with a radiation dose below one mSv. The Siemens scanner enables them to display the entire heart volume within only one heartbeat – independent of the patient’s heart rate. This is an improvement in CTA of the coronary vessels, where, until now, conventional technology has required considerably higher dose rates, and examinations in the sub-mSv range were only possible in very few patients. Dual Source CT allows scanning of every patient with high or irregular heart rates even without the use of beta blockers to slow down the heart rate. This means that even patients who cannot tolerate beta blockers may be spared referral to invasive angiography.

Somatom Definition Flash’s low-dose scanning potential also benefits patients with heart valve disease who were selected for a TAVI and must be examined by CT in order to plan the procedure. The minimally invasive TAVI treatment is particularly appropriate for older patients with a high perioperative risk during heart surgery. It links the implantation of an artificial heart valve with a balloon dilatation in the catheter laboratory. The great advantage is that the patient’s thorax must not be opened as the new valve is inserted through the femoral artery or through a small incision between the ribs.

For the preparation of this procedure, Somatom Definition Flash brings even more benefits to the user. TAVI patients are usually multimorbid and suffer from renal insufficiency. They can barely metabolize larger quantities of contrast agent that often have to be applied for a CTA to display the coronary arteries and the aorta.

“For us, Somatom Definition Flash is the best solution to plan a TAVI because it allows us to reduce contrast agent significantly,” said Tobias Pflederer, M.D., cardiologist at University Hospital Erlangen, Germany. “Single-source CTs, for example, require 100 or even 150 milliliters of contrast agent for assessing the abdominal aorta. With the Definition Flash, we need only 40 milliliters for the aorta and the coronary arteries.”

Prior to the TAVI treatment, the cardiologists need to clarify many anatomical issues regarding the vessels. They must know, for example, whether there are stenoses in the peripheral arteries. In that case, they could not insert the new valve through the femoral artery. Furthermore, they must determine the diameter of the aortic bulbus (initial part of the aorta) to select the right size of the artificial valve. syngo.via combines the application modules syngo.CT Vascular Analysis and syngo.CT Cardiac Function to display a dedicated TAVI planning workflow that helps physicians answer all these questions quickly and easily. The software, for instance, automatically exposes the aorta and its valves virtually. It reconstructs the vessel in the most important planes and automatically indicates the measurements that the physician has to conduct for his diagnosis.

For more information: www.siemens.com/healthcare

Related Content

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo. Gadolinium is contained in contrast agents given to patients undergoing medical magnetic resonance imaging (MRI) scans, and it has been shown in labs to become toxic when exposed to ultraviolet rays. The researchers found significantly elevated levels, particularly near water treatment plants, highlighting the need for new public policy and removal technologies as MRI become even more commonp

Samples were taken along rivers around Tokyo. Measurements of rare earth element quantities indicate a clearly elevated amount of gadolinium compared to that in natural shale. Graphics courtesy of Tokyo Metropolitan University

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers from Tokyo Metropolitan...
Remote reading of imaging studies on home picture archiving and communication systems (PACS) workstations can contribute to social distancing, protect vulnerable radiologists and others in the hospital, and ensure seamless interpretation capabilities in emergency scenarios, according to an open-access article published ahead-of-print by the American Journal of Roentgenology (AJR).

Srini Tridandapani, M.D., Ph.D.

News | PACS | May 21, 2020
May 21, 2020 — 
Examples of chest CT images of COVID-19 (+) patients and visualization of features correlated to COVID-19 positivity. For each pair of images, the left image is a CT image showing the segmented lung used as input for the CNN (convolutional neural network algorithm) model trained on CT images only, and the right image shows the heatmap of pixels that the CNN model classified as having SARS-CoV-2 infection (red indicates higher probability). (a) A 51-year-old female with fever and history of exposure to SARS-

Figure 1: Examples of chest CT images of COVID-19 (+) patients and visualization of features correlated to COVID-19 positivity. For each pair of images, the left image is a CT image showing the segmented lung used as input for the CNN (convolutional neural network algorithm) model trained on CT images only, and the right image shows the heatmap of pixels that the CNN model classified as having SARS-CoV-2 infection (red indicates higher probability). (a) A 51-year-old female with fever and history of exposure to SARS-CoV-2. The CNN model identified abnormal features in the right lower lobe (white color), whereas the two radiologists labeled this CT as negative. (b) A 52-year-old female who had a history of exposure to SARS-CoV-2 and presented with fever and productive cough. Bilateral peripheral ground-glass opacities (arrows) were labeled by the radiologists, and the CNN model predicted positivity based on features in matching areas. (c) A 72-year-old female with exposure history to the animal market in Wuhan presented with fever and productive cough. The segmented CT image shows ground-glass opacity in the anterior aspect of the right lung (arrow), whereas the CNN model labeled this CT as negative. (d) A 59-year-old female with cough and exposure history. The segmented CT image shows no evidence of pneumonia, and the CNN model also labeled this CT as negative.  

News | Coronavirus (COVID-19) | May 19, 2020
May 19, 2020 — Mount Sinai researchers are the first in the country to use...
Now a research team — led by Tohoku University Professor, Wataru Yashiro — has developed a new method using intense synchrotron radiation that produces higher quality images within milliseconds.

How the bent crystal changes the direction of the X-rays. Image courtesy of Tohoku University

News | Computed Tomography (CT) | May 15, 2020
May 15, 2020 — Many will undergo a computed tomogr...
Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function.

Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function. Image courtesy of YaleNews.

News | PET Imaging | May 14, 2020
May 14, 2020 — New imaging technology allows scientists to see the widespread loss of brain synapses in early stages
Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol.

Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol. (A) Experimental timeline. (B) Representative T2WI (using an 11.7T MRI) of the brain of a postnatal day (PND) 11 pup, 1 day after inducing left HII and prior to hNSC transplantation. Note the beginning of an increasingly intense “water signal” (white) on the left (“HII lesion”). (C) Representative T2WI (using an 11.7T MRI) 3 days post-HII, shortly after implantation of SPIO pre-labeled hNSCs into the contralateral cerebral ventricle (“Lateral Vent”). Note the “HII lesion” on the left becoming hyperintense (white) and the black signal void of the SPIO-labeled hNSCs in the lateral ventricle (black arrow). Red arrows denote the needle track. In contrast to what occurs in the intact brain (Figure S4), in a brain subjected to left HII, the implanted SPIO-labeled hNSCs (black signal void) (black arrow) migrate from the right (“R”) to the left (“L”) hemisphere to enter the lesion. (D and E) Shown here (using a 4.7T MRI) are SPIO-labeled hNSCs (black signal void) (black arrow) at 1 month post-implantation into the contralateral ventricle (D) and, in the same representative animal, at 3 months post-implantation (E)–stably integrated and surrounding a much-reduced residual lesion, with no interval enlargement of the graft or ventricles.

News | Magnetic Resonance Imaging (MRI) | May 13, 2020
May 13, 2020 — Scientists at Sanford Burnham Prebys Medical Discov...
Richard J. Price, Ph.D., of the University of Virginia's School of Medicine and School of Engineering, is using focused soundwaves to overcome the natural 'blood-brain barrier,' which protects the brain from harmful pathogens. Photo courtesy of Dan Addison | UVA Communications

Richard J. Price, Ph.D., of the University of Virginia's School of Medicine and School of Engineering, is using focused soundwaves to overcome the natural 'blood-brain barrier,' which protects the brain from harmful pathogens. Photo courtesy of Dan Addison | UVA Communications

News | Focused Ultrasound Therapy | May 07, 2020
May 7, 2020 — University of Virginia researchers are pioneering the use of...