News | Procedure Navigation Systems | October 20, 2017

Johns Hopkins Surgeons Perform First Real-Time Image Guided Spine Surgery

Robotic system uses CT scans to accurately place screws

Johns Hopkins Surgeons Perform First Real-Time Image Guided Spine Surgery

Nicholas Theodore, M.D., (center) and the Excelsius robot he designed for image-guided spine surgery. Image courtesy of Johns Hopkins Medicine.

October 20, 2017 — Surgeons at The Johns Hopkins Hospital have for the first time used a real-time, image-guided robot to insert screws into a patient’s spine. With last week’s surgery, Johns Hopkins joins the growing number of hospitals in the United States that offer robotic-assisted spine surgery.

“We are really excited to be able to offer this to our patients,” said Nicholas Theodore, M.D., professor of neurosurgery at the Johns Hopkins University School of Medicine and director of the Neurosurgical Spine Center of Johns Hopkins Medicine. The robot, he said, has the potential to improve patient safety and decrease procedure time in the operating room. Theodore, who invented the robot before joining the faculty at Johns Hopkins and maintains a financial interest in the technology, said, “This will take what we neurosurgeons do on a daily basis, elevate the art, enable us to do things much more precisely and allow us to perform our best every day.”

One main challenge in minimally invasive spine surgeries for conditions that include degenerative disease, spine tumors or trauma, is knowing where to minimally invade with the least number of readjustments. Currently, spinal screw placement relies on taking multiple X-rays during the procedure to ensure accurate placement. “But we know that about 20 percent of spinal screws inserted are not perfect, so I set out to reverse-engineer and automate accuracy and precision,” said Theodore.

When one drives a car and takes a quick glance to the side, often the steering wheel drifts in the same direction as the driver’s eyes. Theodore says current image-guided surgical procedures require the surgeon to look back and forth between the patient and an image, which causes imperfection of screw placement. While oftentimes these placements are “good enough,” this was not good enough for Theodore.

This new robot marries a computed tomography (CT) scan of the patient with the actual patient, allowing the surgeon to point to a spot on the CT scan and tell the robot to aim for that same spot. Connected to a camera, which itself reads landmarks on the patient, the robot is able to process what the camera sees with the CT image in real time. The biggest fear in this type of procedure is movement, Theodore said —what if the patient breathes or otherwise moves slightly—but this robot can sense changes in position and adjust accordingly.

This new robot joins a few similar robots on the market but works differently and, according to Theodore, holds more potential for other, non-spine uses in the future.

For more information: www.hopkinsmedicine.org

Related Content

This data represents wave 2 of a QuickPoLL survey conducted in partnership with an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business

Getty Images

Feature | Coronavirus (COVID-19) | July 01, 2020 | By Melinda Taschetta-Millane
Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for its head CT scan product qER. The US Food and Drug Administration's decision covers four critical abnormalities identified by Qure.ai's emergency room product.
News | Artificial Intelligence | June 30, 2020
June 30, 2020 — Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit
Researchers from five infectious disease hospitals across four districts in Guangzhou, China found that the less pulmonary consolidation on chest CT, the greater the possibility of negative initial reverse transcription–polymerase chain reaction (RT-PCR) results for 21 patients (nine men, 12 women; age range, 26–90 years)

Comparison of CT features between groups with negative and positive initial RT-PCR results.
aThe difference was statistically significant in comparison of the two groups (p < 0.05).

News | Coronavirus (COVID-19) | June 18, 2020
June 18, 2020 — 
The thickness of the cartilage covering the end of each bone is colour-coded, with red areas denoting thinner cartilage and green-blue areas denoting thicker cartilage. The technique helps locate where arthritis is affecting the joint over time.

The thickness of the cartilage covering the end of each bone is colour-coded, with red areas denoting thinner cartilage and green-blue areas denoting thicker cartilage. The technique helps locate where arthritis is affecting the joint over time. Image courtesy of the University of Cambridge

News | Magnetic Resonance Imaging (MRI) | June 11, 2020
June 11, 2020 — An algorithm that analyzes...
In new QuickPoLL survey on imaging during the pandemic, responses were tallied from around 170 radiology administrators and business managers, who are part of an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business. TMTG is a research firm specializing in the medical device, healthcare and pharmaceutical industries.
Feature | Coronavirus (COVID-19) | June 09, 2020 | By Melinda Taschetta-Millane
Chief among the myriad practical updates to minimize risks for patients and imaging personnel alike is a tiered approach for delaying both outpatient and inpatient cross-sectional interventional procedures

For procedural delays that will not adversely affect patient outcome, Fananapazir and colleagues proposed the following tiered approach for both outpatient and inpatient scenarios: urgent procedures, procedures that should be performed within 2 weeks, procedures that should be performed within 2 months, and procedures that can safely be delayed 2 or 6 months. Courtesy of American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | June 05, 2020
June 5, 2020 — An...
Largest case series (n=30) to date yields high frequency (77%) of negative chest CT findings among pediatric patients (10 months-18 years) with COVID-19, while also suggesting common findings in subset of children with positive CT findings

A and B, Unenhanced chest CT scans show minimal GGOs (right lower and left upper lobes) (arrows) and no consolidation. Only two lobes were affected, and CT findings were assigned CT severity score of 2. Image courtesy of American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | May 29, 2020
May 29, 2020 — An investigation published open-access in the ...