News | Procedure Navigation Systems | October 20, 2017

Johns Hopkins Surgeons Perform First Real-Time Image Guided Spine Surgery

Robotic system uses CT scans to accurately place screws

Johns Hopkins Surgeons Perform First Real-Time Image Guided Spine Surgery

Nicholas Theodore, M.D., (center) and the Excelsius robot he designed for image-guided spine surgery. Image courtesy of Johns Hopkins Medicine.

October 20, 2017 — Surgeons at The Johns Hopkins Hospital have for the first time used a real-time, image-guided robot to insert screws into a patient’s spine. With last week’s surgery, Johns Hopkins joins the growing number of hospitals in the United States that offer robotic-assisted spine surgery.

“We are really excited to be able to offer this to our patients,” said Nicholas Theodore, M.D., professor of neurosurgery at the Johns Hopkins University School of Medicine and director of the Neurosurgical Spine Center of Johns Hopkins Medicine. The robot, he said, has the potential to improve patient safety and decrease procedure time in the operating room. Theodore, who invented the robot before joining the faculty at Johns Hopkins and maintains a financial interest in the technology, said, “This will take what we neurosurgeons do on a daily basis, elevate the art, enable us to do things much more precisely and allow us to perform our best every day.”

One main challenge in minimally invasive spine surgeries for conditions that include degenerative disease, spine tumors or trauma, is knowing where to minimally invade with the least number of readjustments. Currently, spinal screw placement relies on taking multiple X-rays during the procedure to ensure accurate placement. “But we know that about 20 percent of spinal screws inserted are not perfect, so I set out to reverse-engineer and automate accuracy and precision,” said Theodore.

When one drives a car and takes a quick glance to the side, often the steering wheel drifts in the same direction as the driver’s eyes. Theodore says current image-guided surgical procedures require the surgeon to look back and forth between the patient and an image, which causes imperfection of screw placement. While oftentimes these placements are “good enough,” this was not good enough for Theodore.

This new robot marries a computed tomography (CT) scan of the patient with the actual patient, allowing the surgeon to point to a spot on the CT scan and tell the robot to aim for that same spot. Connected to a camera, which itself reads landmarks on the patient, the robot is able to process what the camera sees with the CT image in real time. The biggest fear in this type of procedure is movement, Theodore said —what if the patient breathes or otherwise moves slightly—but this robot can sense changes in position and adjust accordingly.

This new robot joins a few similar robots on the market but works differently and, according to Theodore, holds more potential for other, non-spine uses in the future.

For more information: www.hopkinsmedicine.org

Related Content

EOS Imaging Installs First Site in Mexico
News | Orthopedic Imaging | September 24, 2018
EOS imaging recently announced the first installation of an EOS system in Mexico, the largest Central American market,...
SimonMed Deploys ClearRead CT Enterprise Wide
News | Computer-Aided Detection Software | September 17, 2018
September 17, 2018 — National outpatient physician radiology group SimonMed Imaging has selected Riverain Technologie
Siemens Healthineers Announces First U.S. Install of Somatom go.Top CT
News | Computed Tomography (CT) | September 17, 2018
September 17, 2018 — The Ohio State University Wexner Medical Center in Columbus recently became the first healthcare
The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

Sponsored Content | Case Study | Radiation Dose Management | September 07, 2018
Radiation dose management is central to child patient safety. Medical imaging plays an increasing role in the accurate...
Mount Sinai Serves as Official Medical Services Provider for 2018 U.S. Open
News | Orthopedic Imaging | September 06, 2018
For the sixth consecutive year, Mount Sinai will serve as the official medical services provider for the 2018 U.S. Open...
Carestream Releases Second-Generation Metal Artifact Reduction Software for OnSight 3D Extremity System
Technology | Computed Tomography (CT) | September 06, 2018
Carestream Health has started shipping a new software version for its Carestream OnSight 3D Extremity System that...

Image courtesy of Siemens Healthineers

Feature | CT Angiography (CTA) | September 06, 2018 | Dave Fornell
There have been a few big, recent advancements in cardiac computed tomography angiography (CCTA) imaging technology....
Konica Minolta Provides Sonimage HS1 Ultrasound for AAPM&R Hands-on Learning Course
News | Ultrasound Imaging | September 05, 2018
Konica Minolta Healthcare Americas recently provided ultrasound systems for The American Academy for Physical Medicine...
Key Patient Preparations for a CT Scan
News | Computed Tomography (CT) | September 05, 2018
The Center for Diagnostic Imaging (CDI) in Miami recently released a list of important preparations patients should...
iSchemaView RAPID Technology Now Installed in More Than 500 Stroke Centers
News | Neuro Imaging | August 27, 2018
iSchemaView announced that more than 575 stroke centers in 22 countries have selected the RAPID advanced imaging...