News | Magnetic Resonance Imaging (MRI) | November 28, 2019

New research has uncovered pathways in the brain's white matter that may be altered in patients with FND

Because conventional tests such as clinical magnetic resonance imaging (MRI) brain scans and electroencephalograms (EEGs) are usually normal in patients with FND, there are currently no brain-based markers for this disorder and diagnoses are made using physical examination signs

November 28, 2019 — Individuals with functional neurological disorder (FND) have symptoms not explained by traditional neurological conditions, including limb weakness, tremor, gait abnormalities, seizures and sensory deficits. New research led by investigators at Massachusetts General Hospital (MGH) and published in Psychological Medicine has uncovered pathways in the brain's white matter that may be altered in patients with FND. The findings advance current understanding of the mechanisms involved in this disease, and offer the possibility of identifying markers of the condition and patients' prognosis.

Because conventional tests such as clinical magnetic resonance imaging (MRI) brain scans and electroencephalograms (EEGs) are usually normal in patients with FND, there are currently no brain-based markers for this disorder and diagnoses are made using physical examination signs. More precise research-based imaging methods such as functional MRI and quantitative MRI have revealed several differences in the brains of some patients, including in gray matter regions. To look for any differences in the brain's white matter — which is composed of bundles of axons coated with protective myelin to help conduct nerve signals--investigators used a technique called diffusion tensor imaging (DTI), which measures the diffusion of water molecules.

The team used DTI to examine the brain white matter of 32 patients with FND and 36 healthy controls. Patients also provided information on the severity of their symptoms, the extent of the physical disability they experience, and the duration of their illness.

The researchers found that patient-reported impairments in physical health and illness duration were each associated with disruptions in white matter fibers within the stria terminalis/fornix, a pathway that is the principal output of the amygdala and hippocampus (brain areas that play roles in emotion/salience and learning/memory, respectively). This is notable given that several structural and functional neuroimaging studies have identified amygdalar and hippocampal abnormalities in patients with FND. Furthermore, reduced integrity within another pathway called the medial forebrain bundle also showed a relationship to patient-reported physical health impairments.

"The findings point to the potential importance of white matter pathways in the biology of FND," said lead author Ibai Diez, Ph.D., a senior research fellow in Neurology at MGH. "Our methodological approach here is another novelty. We conducted a set of network analyses that not only identifies patterns of white matter alterations, but also links specific patterns of white matter changes to cortical and subcortical brain areas."

Additional research is needed to determine the potential clinical relevance of the results. "Given that white matter disruptions in the stria terminalis/fornix and medial forebrain bundle related to patient-reported impairments in physical health and illness duration, future analyses should evaluate if these white matter profiles might be connected to specific clinical outcomes," said senior author David Perez, M.D., MMSc director of the MGH FND Clinical and Research Programs. "Our work also requires further clarification and replication in large sample future studies."

 

 

Related Content

News | Proton Therapy

June 27, 2022 — Varian, a Siemens Healthineers company, announced that the U.S. Food and Drug Administration (FDA) ...

Time June 28, 2022
arrow
News | Coronavirus (COVID-19)

June 27, 2022 — Three articles and an accompanying editorial provide information on the effects of Long COVID in the ...

Time June 28, 2022
arrow
News | Radiation Oncology

June 27, 2022 — Neutron Therapeutics, Inc (NT) and the University Hospital of Brussels (H.U.B) today announced that they ...

Time June 28, 2022
arrow
News | Radiation Therapy

June 24, 2022 — Recently, a collaborated research team led by Prof. LI Hai and Hongzhi Wang from Hefei Institutes of ...

Time June 24, 2022
arrow
News | MRI Breast

June 22, 2022 — According to ARRS’ American Journal of Roentgenology (AJR), contrast-enhanced mammography (CEM) may be a ...

Time June 22, 2022
arrow
News | Artificial Intelligence

June 9, 2022 — Infinitt North America and Brainreader A/S announced today a wide ranging and unique partnership to ...

Time June 09, 2022
arrow
News | Ultrasound Imaging

June 7, 2022 — According to ARRS’ American Journal of Roentgenology (AJR), ultrasound-derived fat fraction (UDFF) is ...

Time June 07, 2022
arrow
News | Image Guided Radiation Therapy (IGRT)

June 7, 2022 — Two-year results from the Dysphagia-Aspiration Related Structures (DARS) trial, which is funded by Cancer ...

Time June 07, 2022
arrow
News | Radiation Therapy

June 3, 2022 — Henry Ford Health is the first in the world to complete a full course of patient treatments using the ...

Time June 03, 2022
arrow
Feature | Radiology Business | By Melinda Taschetta-Millane

Here is what you and your colleagues found to be most interesting in the field of medical imaging during the month of ...

Time June 01, 2022
arrow
Subscribe Now