News | May 07, 2015

Compact Light Source Improves CT Scans

New technology may advance preclinical studies of cancer and other diseases

Compact Light Source, CLS, CT, X-ray, SLAC, Lyncean, Eggl, Pfeiffer, TUM

The Compact Light Source by Palo Alto-based Lyncean Technologies Inc. generates X-rays suitable for advanced tomography. The car-sized device is a miniature version of football-field-sized X-ray generators known as synchrotrons and it emerged from basic research at SLAC in the late 1990s and early 2000s. Image courtesy of Lyncean Technologies Inc.

May 7, 2015 — A new study shows that the recently developed Compact Light Source (CLS), a commercial X-ray source, enables computed tomography (CT) scans that reveal more detail than routine scans performed at hospitals today. With roots in research and development efforts at the Department of Energy’s SLAC National Accelerator Laboratory, the new technology could soon be used in preclinical studies and help researchers better understand cancer and other diseases.

With its ability to image cross sections of the human body, X-ray CT has become an important diagnostic tool in medicine. Conventional CT scans are very detailed when it comes to bones and other dense body parts that strongly absorb X-rays. The technique struggles, however, with the visualization and distinction of “soft tissues” such as organs, which are more transparent to X-rays.

“Our work demonstrates that we can achieve better results with the Compact Light Source,” said Professor for Biomedical Physics Franz Pfeiffer of the Technical University of Munich in Germany, who led the new study published April 20 in the Proceedings of the National Academy of Sciences. “The CLS allows us to do multimodal tomography scans – a more advanced approach to X-ray imaging.”

The amount of detail in a CT scan depends on the difference in brightness, or contrast, which makes one type of tissue distinguishable from another. The absorption of X-rays – the basis for standard CT – is only one way to create contrast.

Alternatively, contrast can be generated from differences in how tissues change the direction of incoming X-rays, either through bending or scattering X-ray light. These techniques are known as phase-contrast and dark-field CT, respectively.

“Organs and other soft tissues don’t have a large absorption contrast, but they become visible in phase-contrast tomography,” said the study’s lead author, Elena Eggl, a researcher at the Technical University of Munich. “The dark-field method, on the other hand, is particularly sensitive to structures like vertebrae and the lung’s alveoli.”

However, these methods require X-ray light with a well-defined wavelength aligned in a particular way – properties that conventional CT scanners in hospitals do not deliver sufficiently.

For high-quality phase-contrast and dark-field imaging, researchers can use synchrotrons – dedicated facilities where electrons run laps in football-stadium-sized storage rings to produce the desired radiation – but these are large and expensive machines that cannot simply be implemented at every research institute and clinic.

Conversely, the CLS is a miniature version of a synchrotron that produces suitable X-rays by colliding laser light with electrons circulating in a desk-sized storage ring. Due to its small footprint and lower cost, it could be operated in almost any location.

“The Large Hadron Collider at CERN is the world’s largest colliding beam storage ring, and the CLS is the smallest,” said SLAC scientist Ronald Ruth, one of the study’s co-authors. Ruth is also chairman of the board of directors and co-founder of Palo Alto-based Lyncean Technologies Inc., which developed the X-ray source based on earlier fundamental research at SLAC. “It turns out that the properties of the CLS are perfect for applications like tomography.”

In the recent study, the researchers reported the first “multimodal” CT scan with the CLS: They recorded all three imaging modes – absorption, phase contrast and dark field – at the same time. Using a total of 361 two-dimensional X-ray images of an infant mouse taken from different directions, the scientists generated cross-section images of the animal.

“The absorption images only show bones and air-filled organs,” Eggl says. “However, the phase-contrast and dark-field images reveal much more detail, showing different organs such as the heart and liver. We can even distinguish different types of fat tissue, which is not possible with absorption-based CT scans.”

Using a standard sample of chemically well-defined liquids, the scientists also demonstrated that they could not only visualize but also quantify differences in their properties – information that can be applied to various body tissues and that is only obtained when combining all three tomography modes.

The success of this research, which was done on a CLS prototype, has led to the commissioning of the first commercial device.

The researchers’ next goal is to use the CLS for phase-contrast and dark-field CT in preclinical studies – an approach that could help visualize cancer. “We work closely together with two clinics to study tumors,” Eggl said. “One of our plans is to image breast tissue samples and also entire breasts after mastectomy to better understand the clinical picture of breast cancer.”

For more information: www.slac.stanford.edu

Related Content

Hospital for Special Surgery Invests in Sectra Orthopedic 3-D Planning Software
News | Orthopedic Imaging | January 18, 2018
January 18, 2018 – International medical imaging IT and cybersecurity company Sectra announces that Hospital for Spec
Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
Rayence Demonstrates Full Digital Imaging Product Line at RSNA 2017
News | Digital Radiography (DR) | January 16, 2018
January 16, 2018 — Rayence recently showcased their entire line of new as well as enhanced digital imaging products a
Fat Distribution in Women and Men Provides Clues to Heart Attack Risk
News | Women's Health | January 11, 2018
January 11, 2018 – It’s not the amount of fat in your body but where it is stored that may increase your risk for hea
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Minimally Invasive Treatment Provides Relief from Back Pain

Lumbar spine MRI showing disc herniation and nerve root at baseline and one month after treatment

News | Interventional Radiology | January 11, 2018
The majority of patients were pain free after receiving a new image-guided pulsed radiofrequency treatment for low back...
CT Shows Enlarged Aortas in Former Pro Football Players

3-D rendering from a cardiac CT dataset demonstrating mild dilation of the ascending aorta.

News | Computed Tomography (CT) | January 11, 2018
Former National Football League (NFL) players are more likely to have enlarged aortas, a condition that may put them at...

Size comparison between 3-D printed prosthesis implant and a penny.

News | 3-D Printing | January 11, 2018
January 11, 2018 — Researchers using...
Hip Steroid Injections Associated with Bone Changes

58-year-old woman with left hip pain. X-ray from one month prior to the steroid/anesthetic injection demonstrates moderate joint space narrowing (arrows) and bony proliferation (arrowheads).

News | Orthopedic Imaging | January 11, 2018
January 11, 2018 – Osteoarthritis patients who received a steroid injection in the hip had a significantly greater in
Radiology Offers Clues in Cases of Domestic Abuse and Sexual Assault

Image of 21-year-old woman, who presented with a chronic nasal bone fracture and soft tissue swelling of the left lateral face. Review of electronic medical records revealed presentation to an outside hospital 9 months ago with oblique fracture of the right ring finger proximal phalanx, blowout fracture of the medial wall of the left orbit and similar soft tissue swelling of the left face. Traumatic findings separated in time suggest recurrent violence. Image courtesy of Elizabeth George, M.D.

News | Orthopedic Imaging | January 08, 2018
Radiologic signs of injury could help identify victims of intimate partner violence, according to a study presented at...
Overlay Init