Technology | November 20, 2012

Powerful, Flexible API Incorporates Multiple Features Based on User Feedback that Simplify End-Product Development and Speed Time-to-Market

ultrasound application-programming interface (CS-API) software

November 12, 2012 — Cephasonics, Inc., a technology-innovation leader focused on delivering mixed-signal semiconductors, modules and subsystems to the imaging and ultrasound markets, today announced the release of the Cephasonics ultrasound application-programming interface (CS-API) software Version 3.0. Combined with Cephasonics’ Quest™ (CSK9130) front-end beamforming system, it enables OEMs to develop ultrasound-based products for medical and imaging applications quickly and easily. CS-API V3.0 incorporates new and enhanced functions, including parallel beamforming; Doppler modes such as color-flow mapping (CFM), power-Doppler imaging (PDI), and pulsed-wave Doppler (PWD); duplex/triplex modes; and PCI-Express host-interface support. Cephasonics will demonstrate its latest embedded-ultrasound technology at RSNA in Chicago in Hall B, booth 9525, November 25-30.

“This new release of our powerful ultrasound API software provides a more robust feature set and makes it simpler for our customers to develop innovative ultrasound-based application-specific solutions built around our Quest embedded beamforming front-end system,” said Richard Tobias, CEO and founder of Cephasonics.

CS-API Version 3.0 Highlights

New and enhanced features include:

·         Support for multiple focal zones: This enhancement provides focus on transmit that delivers higher-resolution images. Cephasonics’AutoFocus™ receive beamformer provides dynamic continuous focus that updates at every sample throughout the entire scan depth.

·         Full support to control Doppler processing parameters, and to acquire and display CFM, PDI, and PWD in duplex and triplex modes: This capability allows customers to incorporate any of these imaging modes into their end-product easily.

·         Doppler-mode turn-on: Formerly users generated Doppler images by acquiring raw beam data and performing all the necessary processing on their own. Now they have the option to simply turn Doppler modes on, eliminating the need to develop those algorithms.

·         Full support of parallel-beam processing: Multiple focal zones and/or duplex imaging with both B-mode and Doppler require multiple transmit firings that result in a reduced frame rate. To support the higher frame rates critical to many ultrasound applications, parallel beam processing, including dual beam and QuadBeam™, is supported.

·         PCI-Express (PCIe 1.1, x4) host-interface support:  This provides customers with a higher throughput data path for raw data acquisition.

·         Revamped FrameViewer™ application example: Included with CS-API V3.0 in executable and source code, supports development that takes advantage of all the new features of the release. The dynamic GUI, image display, and XML-based configuration files were updated and streamlined for optimal ease of use.

“The Quest (CSK9130) embedded-ultrasound engine with its feature-rich API allows users to control thousands of system parameters,” said Danny Kreindler, senior director of marketing at Cephasonics. “Users can develop their software with a choice of three programming interfaces that provide different levels of abstraction to the underlying platform and different levels of system-parameter control.” The system is completely self-contained and includes all necessary analog transmit/receive circuitry, beam formation, high-voltage power supplies, mid-processing functions, back-end host and probe interfaces.

The new CS-API V3.0 software will be available in the first quarter of 2013 from Cephasonics and its worldwide network of distribution partners. The company provides a free development and production license to use the software with the purchase of Quest series front-end systems.

For more information: www.cephasonics.com. 

Related Content

News | Ultrasound Imaging

May 25, 2022 — Researchers in Spain conducted a study to compare the diagnostic accuracy of lung ultrasounds (LUS) ...

Time May 25, 2022
arrow
News | Ultrasound Imaging

May 24, 2022 — Mindray, a global leader and developer of healthcare technologies and solutions for ultrasound, patient ...

Time May 24, 2022
arrow
News | Ultrasound Imaging

May 24, 2022 — Butterfly Network, Inc., a digital health company transforming care with handheld, whole-body ultrasound ...

Time May 24, 2022
arrow
Videos | Point-of-Care Ultrasound (POCUS)

Arun Nagdev, M.D., director of emergency ultrasound at the Alameda Health System, clinical associate professor ...

Time May 13, 2022
arrow
News | Focused Ultrasound Therapy

May 12, 2022 — Henry Ford Health is the first in Michigan to offer Robotic High Intensity Focused Ultrasound (HIFU) for ...

Time May 12, 2022
arrow
News | Focused Ultrasound Therapy

May 12, 2022 — UVA Health and the Charlottesville-based Focused Ultrasound Foundation today announced the launch of the ...

Time May 12, 2022
arrow
News | Teleradiology

May 6, 2022 — Jefferson Radiology has implemented advanced telemedicine software for its diagnostic ultrasound ...

Time May 06, 2022
arrow
Feature | Ultrasound Imaging | By Jennifer Meade

Ultrasound has become one of the most important diagnostic tools in a radiologist’s toolkit. In the early days of ...

Time May 03, 2022
arrow
News | Ultrasound Women's Health

May 3, 2022 — iSono Health, Inc. announced U.S. Food and Drug Administration (FDA) clearance of the company’s Atusa ...

Time May 03, 2022
arrow
Feature | Radiology Business | By Melinda Taschetta-Millane

Here is what you and your colleagues found to be most interesting in the field of medical imaging during the month of ...

Time May 02, 2022
arrow
Subscribe Now