Breast cancer risk estimates for individual women vary substantially depending on which risk assessment model is used, and women are likely receiving vastly different recommendations depending on the model used

Getty Images


February 17, 2023 — Breast cancer risk estimates for individual women vary substantially depending on which risk assessment model is used, and women are likely receiving vastly different recommendations depending on the model used and the cutoff applied to define "high risk," according to a new study from UCLA. The study appears online in Journal of General Internal Medicine.

Current incidence rates indicate that about one in eight women born in the United States today will develop breast cancer at some time during her life. The risk increases with age.

As precision medicine evolves in healthcare, breast cancer risk models are increasingly used to identify women who would benefit from medicines to reduce the risk of breast cancer as well as supplemental MRI screening. Easy-to-use risk models are readily available on-line and women are often given a risk estimate on their screening mammogram reports. An important question is how accurate are those models?

In 2019, the US Preventive Services Task Force recommended that clinicians offer risk-reducing medications, such as tamoxifen, raloxifene, or aromatase inhibitors, to women who are at high risk for breast cancer in the next 5 years and at low risk for adverse medication effects.

While previously, a 5-year risk cutoff of 1.67% was established, the Task Force recommended a new, higher 5-year risk cutoff of 3%. And while current breast cancer risk assessment tools work well at a population level, little attention has been paid to how they perform at an individual level or to the variation in risk estimates for the ≥ 3.0% 5-year threshold at the level of the individual.

The current study included more than 31,115 women who were part of the Athena Breast Health Network, a statewide quality improvement initiative across the University of California medical and cancer centers. It focused on three commonly used risk assessment models: the Breast Cancer Risk Assessment Tool (BCRAT, also called the Gail model), the Breast Cancer Surveillance Consortium (BCSC), and the International Breast Intervention Study (IBIS, also called the Tyrer-Cuzick model).

Investigators found when using a threshold of ≥ 1.67%, more than 21% of women were classified as high risk for developing breast cancer in the next 5 years by one model but average risk by another model.

When using a ≥ 3.0% threshold, more than 5% of women had disagreements in risk severity between models. If all three models were used, almost half of women (46.6%) were classified as high risk by at least one model. Because most women will not be diagnosed with breast cancer within 5 years, the authors say many women would be incorrectly classified as high risk.

“This study highlights the risk of a blanket approach to using risk prediction models to inform individual-level medical screening and treatment decisions,” said Dr. Joann Elmore, the paper’s senior author and a professor of medicine in the division of general internal medicine and health services research at the David Geffen School of Medicine at UCLA. “All three of the models we looked at had similar accuracy at the population level, but in our analyses, there was marked disagreement between who was identified as ‘high risk’ by all three models.”

The authors say their findings highlight the tradeoff of sensitivity and inaccurate classification of “high risk” when using the two different thresholds currently recommended. For example, when using the ≥ 1.67% cutoff for considering chemoprevention, about half of the women diagnosed with a future breast cancer might be correctly identified as high risk, yet many more women would be falsely classified as high risk. While using the more conservative ≥ 3.0% cutoff would lead to far fewer women incorrectly classified as high risk, most of the women with a future breast cancer diagnosis would be missed.

The study has some limitations. For example, the cohort was drawn from women enrolled in a longitudinal screening study. And although the authors had extensive risk factor data on many participants, some family history was missing as was data on polygenetic risk scores.

The authors point out that newer risk models are being developed that include information on breast cancer susceptibility genes and genetic susceptibility variants, which may improve predictability. Meanwhile several recent studies suggest that quantitative imaging biomarkers and artificial intelligence algorithms might also supplement or supplant the current, subjective clinical risk assessment tools.

For more information: https://www.uclahealth.org/

 

Related Breast Imaging Content:

Breast Cancer Risk Calculator Can Assess Risk of Advanced Breast Cancer

Uncertainty About Breast Cancer Risk and Screening Choices and Perceived Risk Heighten with Breast Density Awareness Following Mammography

Creating Patient Equity: A Breast Density Legislative Update

FDA Needs to Ensure that Information on Dense Breast Notifications are Clear and Understandable to all Members of the Public

AI Provides Accurate Breast Density Classification

VIDEO: The Impact of Breast Density Technology and Legislation

VIDEO: Personalized Breast Screening and Breast Density

VIDEO: Breast Cancer Awareness - Highlights of the NCoBC 2016 Conference

Fake News: Having Dense Breast Tissue is No Big Deal

The Manic World of Social Media and Breast Cancer: Gratitude and Grief


Related Content

News | Breast Imaging

June 20, 2024 — The technologically advanced VELA Mammography Chair, offered by Enable Me, a VELA Medical company ...

Time June 20, 2024
arrow
News | Breast Imaging

June 18, 2024 — Delphinus Medical Technologies, a pioneering medical imaging company that developed the SoftVue Breast ...

Time June 18, 2024
arrow
News | MRI Breast

June 12, 2024 — Royal Philips recently announced the 1,111th installation of its revolutionary BlueSeal 1.5T magnet ...

Time June 12, 2024
arrow
News | Breast Imaging

June 7, 2024 — Scholars and studies funded by Susan G. Komen(R), the world’s leading breast cancer organization ...

Time June 07, 2024
arrow
News | Breast Density

June 6, 2024 — Subsequent rounds of abbreviated breast MRI (AB-MR) screening in patients with dense breasts had lower ...

Time June 06, 2024
arrow
News | Breast Imaging

June 4, 2024 — Using artificial intelligence (AI), breast radiologists in Denmark have improved breast cancer screening ...

Time June 04, 2024
arrow
Feature | Radiology Business | By Melinda Taschetta-Millane

As we flip the page to a new month on our calendars, here is a look at the Top 10 pieces of content viewers were reading ...

Time June 04, 2024
arrow
News | Breast Imaging

May 28, 2024 — iCAD, Inc., a global leader in clinically proven AI-powered cancer detection solutions, announced a ...

Time May 28, 2024
arrow
News | FDA

May 22, 2024 — The U.S. Food and Drug Administration (FDA) has issued a recall of the Hologic Inc. BioZorb marker due to ...

Time May 22, 2024
arrow
News | Artificial Intelligence

May 22, 2024 — Lunit, a provider of Artificial intelligence (AI)-powered solutions for cancer diagnostics and ...

Time May 22, 2024
arrow
Subscribe Now