News | Neuro Imaging | August 26, 2016

Brain Activity, Response to Food Cues Differ in Severely Obese Women

MRI scans reveal interest in food based on brain activity declined only marginally in obese women compared to lean women, even after a full meal

brain activity, obese women, food cues, UT Southwestern study

August 26, 2016 — The brain’s reward centers in severely obese women continue to respond to food cues even after they’ve eaten and are no longer hungry, in contrast to their lean counterparts, according to a recent study. The study was conducted by a multidisciplinary team at University of Texas (UT) Southwestern Medical Center.

The study, published recently in the journal Obesity, compared attitudes and the brain activity of 15 severely obese women (those with a body mass index greater than 35) and 15 lean women (those with a BMI under 25).

Magnetic resonance imaging (MRI) scans of the study participants were taken before and after a meal. Both groups showed significantly increased activity in the neo- and limbic cortices and midbrain when they were hungry. After eating, however, that brain activity dropped among lean participants while continuing in their obese counterparts.

Even after eating and reporting they were full, the severely obese women continued to react to pictures of food in much the same way they had when fasting, as exhibited in brain scans.

“Before or after the meal, they’re just as excited about eating,” said Nancy Puzziferri, M.D., assistant professor of surgery at UT Southwestern and senior author of the study. “It seems they have an instinctive drive to keep eating.”

While the appeal of pictured food dropped 15 percent for the lean women after they ate, the severely obese women showed only a 4 percent decline, based on brain scans using functional magnetic resonance imaging (fMRI) to measure brain activity. After eating, activity in regions in the prefrontal cortex and posterior cingulate cortex significantly changed in the lean group, but not in the obese group. The obese study participants maintained activation in the midbrain, one of the body’s most potent reward centers.

Study participants had fasted for nine hours prior to testing. They were asked to rate their level of hunger or fullness, then given a brain scan as they viewed pictures of food. Again, they were asked to rate their level of hunger. Over the next hour, the women were fed a meal of lean beef or chicken, potatoes or rice, green beans, canned peaches, and iced tea or water. After eating, the participants went through another battery of hunger/fullness ratings and fMRI scans while exposed to pictures of food.   

The obese women showed sustained “hungry” brain activation, even though they reported the same increase in satiation as their lean counterparts.

“These findings may explain why some people with severe obesity report an underlying drive to eat continually despite not feeling hungry,” said Puzziferri, who specializes in bariatric and weight loss surgery. “In contrast, lean women when full will either stop eating or just sample a food they crave. It’s just not a level playing field — it’s harder for some people to maintain a healthy weight than others.”

The severely obese women in the study, who weighed between 202 and 316 pounds, were candidates for bariatric surgery to lose weight. The study is following these women after surgery to determine if their brain activation patterns change.

The study was conducted at UT Southwestern and VA North Texas Health Care System. Funding for the research came from UT Southwestern and the National Institutes of Health.

Study co-authors from UT Southwestern include Thomas Carmody, Ph.D., associate professor of clinical science and psychiatry; Carol Tamminga, M.D., chair of psychiatry, and holder of the Lou and Ellen McGinley Distinguished Chair in Psychiatric Research, and the Communities Foundation of Texas Inc. Chair in Brain Science; and Jeffrey Zigman, M.D., Ph.D., associate professor of internal medicine and psychiatry, and holder of The Diana and Richard C. Strauss Professorship in Biomedical Research and the Mr. and Mrs. Bruce G. Brookshire Professorship in Medicine.

For more information: www.obesity.org/publications/obesity-journal

Related Content

Stereotactic Radiosurgery Effective for Pediatric Arteriovenous Malformation Patients
News | Radiation Therapy | April 19, 2019
Ching-Jen Chen, M.D., of the neurosurgery department at the University of Virginia (UVA) Health System, was the winner...
Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
Artificial Intelligence Performs As Well As Experienced Radiologists in Detecting Prostate Cancer
News | Artificial Intelligence | April 18, 2019
University of California Los Angeles (UCLA) researchers have developed a new artificial intelligence (AI) system to...
Surgically Guided Brachytherapy Improves Outcomes for Intracranial Neoplasms
News | Brachytherapy Systems | April 18, 2019
Peter Nakaji, M.D., FAANS, general practice neurosurgeon at Barrow Neurological Institute, presented new research on...
Check-Cap Initiates U.S. Pilot Study of C-Scan for Colorectal Cancer Screening
News | Colonoscopy Systems | April 15, 2019
Check-Cap Ltd. has initiated its U.S. pilot study of the C-Scan system for prevention of colorectal cancer through...
A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images

A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images. The algorithm, described at the SBI/ACR Breast Imaging Symposium, used “Deep Learning,“ a form of machine learning, which is a type of artificial intelligence. Graphic courtesy of Sarah Eskreis-Winkler, M.D.

Feature | Artificial Intelligence | April 12, 2019 | By Greg Freiherr
The use of smart algorithms has the potential to make healthcare more efficient.
Gamma Knife radiosurgery has become the preferred radiation therapy option for patients with brain tumors at facilities like the Northwestern Medicine Cancer Center, pictured here

Gamma Knife radiosurgery has become the preferred radiation therapy option for patients with brain tumors at facilities like the Northwestern Medicine Cancer Center, pictured here. The technology is favored largely for its ability to precisely target tumors while sparing healthy tissue.

Feature | Radiation Oncology | April 11, 2019 | By Jeff Zagoudis
Brain tumors are some of the most complicated forms of cancer to treat due to their extremely sensitive location.
Deep Lens Closes Series A Financing for Digital AI Pathology Platform
News | Digital Pathology | April 09, 2019
Digital pathology company Deep Lens Inc. announced the closing of a $14 million Series A financing that will further...
Uterine Fibroid Embolization Safer and as Effective as Surgical Treatment
News | Interventional Radiology | April 05, 2019
Uterine fibroid embolization (UFE) effectively treats uterine fibroids with fewer post-procedure complications compared...
Videos | RSNA | April 03, 2019
ITN Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies displa