News | August 28, 2013

Automatic Deformable Alignment Significantly Reduces Radiologist Time to Match Lung Nodule Locations

Study data particularly relevant in light of USPSTF recommendation for low-dose CT screening for lung cancer

August 28, 2013 — Medical software developer Blackford Analysis announced that picture archiving and communications systems (PACS) integrated with its automatic alignment technology deliver significant time savings when matching lung nodule locations across current and prior chest computed tomography (CT) exams. Preliminary results indicate a time saving of greater than 50 percent with automatic deformable alignment over manual alignment of current and priors.

Lung nodules, a common finding in chest CT exams, are routinely followed by serial chest CT where the radiologist must assess individual nodules for change. Manually matching nodule location across exams is burdensome due to differences in pulmonary anatomy caused by variance in patient positioning and breath hold.

The Stony Brook study, which will be published later this year, retrospectively identified 27 subjects from Stony Brook Medical Center with nodules in two chest CTs within three years. The study measured the time taken for board-certified radiologists to match each of the 112 nodules in prior exams to the same location in current exams in PACS using two volume alignment methods:

  1. Manual Rigid, where the radiologist synchronized scrolling manually at the most superior slice where air was visible in the right lung.
  2. Automatic Deformable, where Blackford Analysis’ PACS-integrated software performed automatic deformable alignment of current and prior chest CT exams.


Preliminary results show that automatic deformable alignment provided by Blackford Analysis significantly reduces lung nodule location matching time when compared with conventional manual slice synchronization. Preliminary data has shown that automatic deformable alignment can reduce location match time by greater than 55 percent compared to manual alignment.

“Lung nodule studies can be quite a challenge to compare due to the differences in pulmonary anatomy caused by variance in patient positioning and breath hold,” said Matthew A. Barish, M.D., FACR, clinical associate professor of radiology; director, body imaging; director, body MRI (magnetic resonance imaging); Stony Brook Medicine. “Using a PACS integrated with Blackford Analysis has made a clear difference to our ability to quickly identify nodule locations across exams, and our early data confirms a significant reduction in the time spent locating nodules in follow-up studies allowing for quick determinations of nodule stability or growth.”

The U.S. Preventive Services Task Force (USPSTF) recently issued a draft recommendation in favor of low-dose CT lung cancer screening for individuals aged 55-79 with at least a 30 pack year smoking history who currently smoke or quit within 15 years.

“This data is particularly relevant in light of recent developments, as the USPSTF recommendation on lung cancer screening is going to have a big impact on radiologists across the United States,” said Ben Panter, CEO, Blackford Analysis. “Once a reimbursement code is issued, there will be a massive increase in low-dose chest CT screening studies for lung cancer, with an increasing number of priors to compare for change in lung nodules, which will present a significant increase in workload for radiologists, and that’s where our software can really help make a positive difference.”

Designed to be seamlessly integrated into any PACS, the Blackford software suite uses algorithms to allow rapid alignment of current and prior cross-sectional exams, including those from different modalities such as CT, MRI and PET (positron emission tomography).

For more information: www.blackfordanalysis.com

Related Content

Hospital for Special Surgery Invests in Sectra Orthopedic 3-D Planning Software
News | Orthopedic Imaging | January 18, 2018
January 18, 2018 – International medical imaging IT and cybersecurity company Sectra announces that Hospital for Spec
Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
Sponsored Content | Videos | Enterprise Imaging | January 16, 2018
Built on an over 25-year pioneering legacy in the advanced visualization industry, Vital continues to expand on three
RSNA 2017 Celebrates Innovation in Radiology
News | Imaging | January 15, 2018
January 15, 2018 — The Radiological Society of North America’s...
Transpara Deep Learning Software Matches Experienced Radiologists in Mammogram Reading
News | Computer-Aided Detection Software | January 12, 2018
Deep learning and artificial intelligence improves the efficiency and accuracy of reading mammograms, according to...
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Fat Distribution in Women and Men Provides Clues to Heart Attack Risk
News | Women's Health | January 11, 2018
January 11, 2018 – It’s not the amount of fat in your body but where it is stored that may increase your risk for hea
Minimally Invasive Treatment Provides Relief from Back Pain

Lumbar spine MRI showing disc herniation and nerve root at baseline and one month after treatment

News | Interventional Radiology | January 11, 2018
The majority of patients were pain free after receiving a new image-guided pulsed radiofrequency treatment for low back...
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Overlay Init