News | Advanced Visualization | April 25, 2016

3-D Imaging Technique Applied for First Time to Deadly Lung Disease

Researchers believe microfocus CT may help develop more targeted, individualized therapies for idiopathic pulmonary fibrosis

microfocus CT, University of Southampton study, IPF, 3-D imaging, lung disease

2 mm cubes of lung tissue imaged by microCT. In (A) is normal lung tissue and in (B) is IPF lung tissue. The very fine lung structure seen in the normal lung tissue is destroyed by IPF and replaced by the much thicker scar tissue seen in (B). Image courtesy of University of Southampton.

April 25, 2016 — Doctors and scientists at the University of Southampton have used advanced 3-D X-ray imaging technology to give new insight into the way an aggressive form of lung disease develops in the body.

Originally designed for the analysis of substantial engineering parts, such as jet turbine blades, the powerful scanning equipment at Southampton’s µ-VIS Centre for Computed Tomography (CT) has been used to image idiopathic pulmonary fibrosis (IPF) lung tissue samples for the first time.

IPF is usually diagnosed via a hospital CT scan or by using a microscope to view a lung biopsy sample. However, Southampton researchers have now successfully applied microfocus CT to image biopsy samples. This allowed them to view each lung sample with a level of detail similar to an optical microscope but now in 3-D.

It had been thought that active scarring in IPF progressed like a large ‘wave’ from the outside to the inside of the lung. Instead, the study, published in JCI Insight, found that there are large numbers of individual sites of active disease scarring. The research team, from the National Institute for Health Research Southampton Respiratory Biomedical Research Unit, believes this finding will help to ensure doctors develop targeted therapies focusing on these areas.

Each year over 5,000 new cases of IPF are diagnosed in the United Kingdom, and the number of cases is increasing by around 5 percent every year. The condition, one of a group of disorders known collectively as interstitial lung diseases, causes inflammation and scarring of the lung tissue. This makes it increasingly difficult to breathe, and it leaves sufferers with a life expectancy of only three to five years.

The study’s lead author Mark Jones, Ph.D., a Wellcome Trust fellow from the University of Southampton and University Hospital Southampton, commented: “Whilst accurate diagnosis of IPF is essential to start the correct treatment, in certain cases this can be extremely challenging to do using the tools currently available. This technology advance is very exciting as for the first time it gives us the chance to view lung biopsy samples in 3-D. We think that the new information gained from seeing the lung in 3-D has the potential to transform how diseases such as IPF are diagnosed. It will also help to increase our understanding of how these scarring lung diseases develop, which we hope will ultimately mean better targeted treatments are developed for every patient.”

The study was funded by the Wellcome Trust and also involved researchers at the Royal Brompton Hospital, National Jewish Health in Colorado and University College Dublin. The µ-VIS Centre received launch funding from the Engineering and Physical Sciences Research Council (grant EP-H01506X) and the University of Southampton, along with ongoing imaging collaboration with Nikon Metrology.

Microfocus CT can scan inside objects in great detail – rotating 360 degrees whilst taking thousands of 2-D images, which are then used to build detailed 3-D images.

The Southampton team are now studying how this technique can help doctors improve the way we diagnose such diseases more accurately, to ensure every patient will receive the correct treatment.

For more information: www.insight.jci.org

Related Content

Artificial Intelligence Used in Clinical Practice to Measure Breast Density
News | Artificial Intelligence | January 15, 2019
An artificial intelligence (AI) algorithm measures breast density at the level of an experienced mammographer,...
Machine Learning Uncovers New Insights Into Human Brain Through fMRI
News | Neuro Imaging | January 11, 2019
An interdisciplinary research team led by scientists from the National University of Singapore (NUS) has successfully...
Mobile App Data Collection Shows Promise for Population Health Surveys
News | Population Health | January 10, 2019
Mobile app data collection can bring access to more potential clinical study participants, reduce clinical study...
Videos | Advanced Visualization | January 09, 2019
Vinodh Kumar, M.D., and Komal Shah, M.D., associate professors of radiology at...
3-D Reconstruction of Ichthyosaurus Skull

A 3-D reconstruction of the ichthyosaurus skull from a computed tomography (CT) scan. Image courtesy of Nigel Larkin, taken at Royal Veterinary College, London.

News | Computed Tomography (CT) | January 09, 2019
A nearly meter-long skull of a giant fossil marine ichthyosaur found in a farmer's field more than 60 years ago has...
SCCT Releases New Guideline for CT Use During TAVR
News | Computed Tomography (CT) | January 08, 2019
The Society of Cardiovascular Computed Tomography (SCCT) has released a new expert consensus document for computed...
Hypertension With Progressive Cerebral Small Vessel Disease Increases Cognitive Impairment Risk
News | Magnetic Resonance Imaging (MRI) | January 08, 2019
Patients with high blood pressure and progression of periventricular white matter hyperintensities showed signs of...
Artificial Intelligence Pinpoints Nine Different Abnormalities in Head Scans

A brain scan (left) showing an intraparenchymal hemorrhage in left frontal region and a scan (right) of a subarachnoid hemorrhage in the left parietal region. Both conditions were accurately detected by the Qure.ai tool. Image courtesy of Nature Medicine.

News | Artificial Intelligence | January 07, 2019
The rise in the use of computed tomography (CT) scans in U.S. emergency rooms has been a well-documented trend1 in...
Electronic Brachytherapy Effective in Long-Term Study of 1,000 Early-Stage Breast Cancers
News | Brachytherapy Systems, Women's Healthcare | January 07, 2019
Breast cancer recurrence rates of patients treated with intraoperative radiation therapy (IORT) using the Xoft Axxent...