Breast Imaging
Women's health related to breast imaging, including mammography, breast MRI, ABUS, automated breast ultrasound, breast ultrasound, breast biopsy, PEM and positron emission mammography.

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the x, y and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

Kubtec hosts a Podcast: Impact of COVID-19 on Breast Cancer Treatment with Andrea Madrigrano, M.D., as part of its public service campaign.

Table 1. Compared to 2-D mammography, which yields four images per patient, digital breast tomosynthesis (DBT), or 3-D mammography, produces hundreds of images per patient. While this provides more information for clinicians, the exponential increase in data can result in reader fatigue and burnout, which may ultimately affect patient care.

Figure 1. R MLO view from four different years. The skin mole is marked with a circular skin marker (TomoSPOT REF# 782, Beekley Medical) on the far-left image. These images demonstrate the potential for significant variability in location of the skin lesion due to movability of the skin during positioning.

Breast density is divided into four categories, from lowest to highest amounts of fibroglandular tissue composition. Category A: Almost entirely fatty (least amount of fibroglandular tissue). Category B: Scattered fibroglandular tissue. Category C: Heterogeneously dense. Category D: Extremely dense (most amount of fibroglandular tissue).

Images in a 57-year-old woman noted to have "good prognosis" invasive cancer detected at digital breast tomosynthesis (DBT) screening. (a) Craniocaudal view of the left breast obtained with the two-dimensional digital mammography (DM) portion of the DM/DBT screening study demonstrates a subtle area of distortion in the medial left breast. (b) Single-slice image from the left craniocaudal DBT portion of the screening study shows an area of bridging distortion (circle). (c) Electronically enlarged image of the area of concern seen on the left craniocaudal view in a single DBT slice as shown in b. (d) Targeted US scan demonstrates two small adjacent irregular solid masses. US-guided core biopsy yielded an invasive carcinoma of the tubular subtype that was estrogen receptor positive, progesterone receptor positive, and human epidermal growth factor receptor 2 negative. The results of the sentinel node biopsy were negative. Image courtesy of the Radiological Society of North America

Example: SoftVue image stacks of sound speed, as shown for cases ranging across the four Breast Imaging Reporting and Data System (BI-RADS) breast density categories ((a), fatty; (b), scattered; (c), heterogeneously dense; (d), extremely dense). Note the quantitative scale indicating that absolute measurements are obtained. Image courtesy of MDPI