Feature | Radiation Oncology | January 03, 2020 | Dave Fornell, Editor

The Most Popular Radiotherapy Topics in 2019

Six of the top 20 radiotherapy stories in 2019 involved proton therapy. This includes two video inetrviews shot during a site visit to the Northwestern Medicine Proton Center in the Chicago suburb of Warrenville, Ill.

Six of the top 20 radiotherapy stories in 2019 involved proton therapy. This includes two video inetrviews shot during a site visit to the Northwestern Medicine Proton Center in the Chicago suburb of Warrenville, Ill.

January 3, 2020 — Here is the top 20 pieces of radiation oncology content on the Imaging Technology News (ITN) website from 2019, based on the analytics of its record 2.16 million pageviews. 

1. VIDEO: The Role of the Physicist in Proton Therapy — Interview with Mark Pankuch, Ph.D.

2. Varian Discloses First Preclinical Results of Flash Therapy in Cancer Treatment 

3. VIDEO: Use of Machine Learning to Automate Radiotherapy Treatment Planning

4. Surgery Versus Radiation Therapy in Non-small Cell Lung Cancer

5. Innovations in Radiotherapy and Radiology at Henry Ford Hospital

6. VIDEO: Artificial Intelligence Driven Adaptive Radiotherapy System Begins Treating Patients

7. VIDEO: Use of a Fully Self-contained Brain Radiotherapy System

8. New Treatment Planning System Technologies

9. Netherlands Proton Therapy Center Delivers First Clinical Flash Irradiation

10. VIDEO: Y90 Embolization of Liver Cancer at Henry Ford Hospital

11. New Radiotherapy and Medical Physics Technology at AAPM 2019

12. What to Expect from the Proton Therapy Market in 2019-2020

13. VIDEO: Creating a Low-cost Radiotherapy System for the Developing World

14. Trends in Proton Therapy — Faster Therapy Delivery, Single-room Installs

15. Stereotactic Radiotherapy Improves Long-Term Survival in Stage-IV Cancers

16. Varian Acquires CyberHeart Cardiac Radio-ablation Technology

17. VIDEO: Proton Therapy Treatment at Northwestern Medicine — Interview with with Bill Hartsell, M.D.

18. VIDEO: Artificial Intelligence Automatic Contouring and Segmentation For Radiotherapy

19. Philips Collaborates With MIM Software on Radiation Therapy Treatment Planning

20. Varian Unveils Ethos Solution for Adaptive Radiation Therapy
 

 

 

Related Content

Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Feature | Proton Therapy | May 27, 2020 | By Minesh Mehta, M.D.
Radiation therapy has advanced significantly in the last few decades as a result of a continued technological revolut
Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve.

Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve. Getty Images

Feature | Oncology Information Management Systems (OIMS) | May 27, 2020 | By Reshu Gupta
In the history of medicine, researchers have found cures for many diseases, but cancer has been elusive.
Off-site imaging companies are playing a key role in the fight against COVID-19
Feature | Coronavirus (COVID-19) | May 26, 2020 | By Sean Zahniser
After the worst of the COVID-19 pandemic has pas
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Despite facing challenges such as limited access to personal protective equipment (PPE) following the COVID-19 outbreak, radiation oncology clinics quickly implemented safety and process enhancements that allowed them to continue caring for cancer patients, according to a new national survey from the American Society for Radiation Oncology (ASTRO).

Getty Images

News | Coronavirus (COVID-19) | May 21, 2020
May 21, 2020 — Despite facing challenges such as limited access to...
In response to the significant healthcare delivery changes brought on by COVID-19, Varian has launched new capabilities for its Noona software application, a powerful tool designed to engage cancer patients in their care for continuous reporting and symptom monitoring.
News | Radiation Oncology | May 21, 2020
May 21, 2020 — In response to the significant healthcare delivery changes brought on by...
The global radiation therapy market is expected to reach $10.11 billion in 2024, witnessing growth at a CAGR of 3.38%, over the period 2020-2024.
News | Proton Therapy | May 20, 2020
May 20, 2020 — ResearchAndMarkets.com has released its latest report, the ...