Feature | Treatment Planning | July 01, 2019 | By Jeff Zagoudis

New Treatment Planning System Technologies

This feature is an introduction to ITN's comparison chart on Treatment Planning Systems. You can view the chart here.

Philips Pinnacle

Image courtesy of Philips Healthcare

Treatment planning systems (TPS) are a critical component of radiation therapy delivery, primarily to ensure that the tumor site is receiving the maximum therapeutic dose while sparing surrounding tissue and organs as much as possible. As treatment methods continue to evolve and expand, more sophisticated technology is required to ensure that modalities like proton therapy, image-guided radiation therapy and others are being employed in the most effective manner to maximize benefit to the patient. The following is a selection of some of the newest technologies related to treatment planning that have been introduced in the last 12 months.

 

Artificial Intelligence in Treatment Planning

The use of artificial intelligence (AI) in healthcare to help automate and streamline time-consuming processes has been migrating into radiotherapy treatment planning, with several companies introducing new AI treatment planning solutions over the past year.

Siris Medical employs AI to offer real-time editing of plan contours in its new PlanMD decision support software. As the user draws the contours of the target treatment area, PlanMD lets them see the result of their efforts in real time, without reoptimizing or replanning, which can lead to significant time savings. The software is a complement to Siris’ other AI product, QuickMatch, which automatically pulls up prior cases from its archive that are most similar to the current one. Once the QuickMatch algorithm has been properly trained, it can reduce the time required for treatment planning by up to 70 percent, according to Siris Medical President and CEO Colin Carpenter.

Sweden’s RaySearch Laboratories introduced numerous applications for AI — also known as machine learning or deep learning — in version 8B of its flagship TPS software, RayStation, released at the end of 2018. RayStation 8B can be trained to automate treatment planning as well as organ segmentation, either using the clinic’s own data or by pre-trained models provided by RaySearch.

The new machine learning applications are just the first planned for rollout in RayStation, with several others currently in development. RaySearch demonstrated some of these future capabilities, including target volume estimation and large-scale data extraction and analysis, at the 2018 American Society for Radiation Oncology (ASTRO) annual meeting in September.

 

Treatment Control System in Development

Shortly before the rollout of RayStation 8B, RaySearch announced it is developing a new treatment control system (TCS) for Advanced Oncotherapy plc (AVO) in the U.K. Treatment control systems act as the conduit between all the elements of radiation therapy treatment, including the TPS, oncology information system (OIS) and the treatment delivery system. A TCS coordinates and orchestrates the activity of the various systems, including imaging, beam delivery and patient support, to maximize the safety and efficacy of treatment. RaySearch said the new TCS, dubbed RayCommand, will also allow online adaptive radiation therapy, a capability not offered by many existing TCS, according to the company.

AVO, a spinoff business from the European Organization for Nuclear Research (CERN), is in the process of building a new proton therapy center at Harley Street in central London. AVO has already purchased RayStation as well as the RayCare OIS, so with RayCommand, it will be the first facility to feature an all-RaySearch treatment planning operation.

 

Molecular Radiotherapy Dosimetry

In January, MIM Software received U.S. Food and Drug Administration (FDA) clearance for a new dosimetry software product specifically for molecular radiotherapy (MRT). Unlike photon or proton radiation therapy, which both project beams toward the tumor target, MRT employs radiopharmaceuticals to target tumors based on certain receptors they express. The difficulty with MRT has been accurately measuring the absorbed dose for an individual patient, due to lack of access to quantitative single photon emission computed tomography (SPECT) images and tools for calculating dose on the patient’s own anatomy.

The new software, MIM SurePlan RT, provides both quantitative SPECT reconstruction and voxel-based absorbed dose calculation from the patient’s own images. These capabilities combined allow for more personalized dosimetry measurements. Other features include multi-tracer theranostics support, quantitative SPECT and planar corrections, and dosimetry reporting tools.

 

Collaboration to Streamline

MIM Software also announced a new collaboration with Philips Healthcare to provide an integrated portfolio of imaging and treatment planning solutions. By collaborating to integrate their radiation oncology solutions, the two companies will enable clinicians to benefit from a more streamlined approach to treatment planning across both companies’ product portfolios.

Philips recently introduced several additions to its radiation oncology portfolio, including the new Big Bore RT and Ingenia Ambition/Elition MR-RT imaging systems and Pinnacle Evolution treatment planning software. Pinnacle Evolution introduces Personalized Planning so clinicians can create patient-specific goals through an advanced protocol-based therapy planning workflow and automated optimization algorithms.

The agreement with MIM Software follows other recent partnerships in radiation oncology for Philips. In early 2018, Philips announced it is collaborating with Sun Nuclear to integrate its suite of PlanIQ software into its Pinnacle treatment planning platform. PlanIQ allows clinicians to measure and improve treatment plan quality on a patient-specific level, with quantitative scorecards attuned to personalized metrics that reflect clinical goals. Later in the year at ASTRO, Philips announced an agreement with Lifeline Software Inc. to utilize its fully automated independent dose verification technology.

You can view ITN's comparison chart on Treatment Planning Systems chart here.

 

Related Content

Anne Hubbard, MBA, director of health policy for the American Society for Radiation Oncology

Anne Hubbard, MBA, director of health policy for the American Society for Radiation Oncology (ASTRO), explains the details of the proposed radiation oncology alternative payment model (APM), and issues ASTRO has raised with the model, at the 2019 ASTRO annual meeting in Chicago.

News | Radiation Oncology | September 18, 2019
During its annual meeting in September, the American Society for Radiation Oncology (ASTRO) issued a response to the...
Radiation After Immunotherapy Improves Progression-free Survival for Some Metastatic Lung Cancer Patients
News | Lung Cancer | September 18, 2019
Adding precisely aimed, escalated doses of radiation after patients no longer respond to immunotherapy reinvigorates...
IBA Gathers Experts on Flash Irradiation During ASTRO
News | Proton Therapy | September 17, 2019
IBA (Ion Beam Applications SA, held its third Victoria Consortium Meeting focusing on Flash irradiation at the 2019...
Noninvasive Radioablation Offers Long-term Benefits to High-risk Heart Arrhythmia Patients
News | Radiation Therapy | September 17, 2019
September 17, 2019 — Treating high-risk heart patients with a single, high dose of...
Sun Nuclear Presents Portfolio of Independent Radiotherapy QA Solutions at ASTRO 2019

The PlanCheck module now part of SunCheck, automates plan quality checks, validates treatment plans against requirements, and automatically assesses plan performance versus intent.

News | Quality Assurance (QA) | September 16, 2019
At the 2019 American Society for Radiation Oncology (ASTRO) Annual Meeting, running Sept. 15-18 in Chicago, Sun Nuclear...
Varian Unveils Ethos Solution for Adaptive Radiation Therapy
News | Image Guided Radiation Therapy (IGRT) | September 16, 2019
At the 2019 American Society for Radiation Oncology (ASTRO) annual meeting, being held Sept. 15-18 in Chicago, Varian...
Long-term Hormone Therapy Increases Mortality Risk for Low-PSA Men After Prostate Surgery
News | Prostate Cancer | September 16, 2019
Secondary analysis of a recent clinical trial that changed the standard of care for men with recurring prostate cancer...
The Siemens Somatom Go.Sim computed tomography (CT) system for dedicated radiation therapy planning

The Siemens Somatom Go.Sim computed tomography (CT) system for dedicated radiation therapy planning. Image courtesy of Siemens Healthineers.

News | Computed Tomography (CT) | September 15, 2019
Siemens Healthineers debuted two computed tomography (CT) systems dedicated to radiation therapy (RT) planning at the...
Isoray to Spotlight Cesium-131 Advances at ASTRO Annual Meeting
News | Brachytherapy Systems | September 13, 2019
Isoray Inc. announced it will spotlight the growing cancer treatment applications of Cesium-131 brachytherapy at the...
Akesis Galaxy SRS System Receives FDA 510(k) Clearance
Technology | Radiation Therapy | September 13, 2019
The Akesis Galaxy, a gamma stereotactic radiosurgery system (SRS) with continuous 360-degree rotational technology, has...