Feature | Artificial Intelligence | July 03, 2019 | By Greg Freiherr

Artificial Intelligence Boosts Radiologist Skills

AI should complement people, says SIIM presenter

AI should complement people, says SIIM presenter

Jeffrey D. Rudie, M.D., Ph.D., a radiology resident at the University of Pennsylvania, presenting at SIIM19.

Greg Freiherr

Greg Freiherr

Smart software improved the performance of resident radiologists to the level of academic experts in neuroradiology, according to research presented at the 2019 meeting of the Society of Imaging Informatics in Medicine (SIIM). Even on its own, the automated system, called ARIES (Adaptive Radiology Interpretive Education System), outperformed groups of radiologists who are not experts in neurology.

The presenter of data indicating the clinical power of this software advised against using artificial intelligence in place of radiologists. ARIES or similar technology could, however, improve the efficiency and accuracy of radiological decision-making, according to Jeffrey D. Rudie, M.D., Ph.D., a radiology resident at the University of Pennsylvania. This kind of technology, he said, has the potential to help radiologists meet the rising complexity and volume of medical imaging.

The ARIES automated system, which quantitatively characterizes brain MRIs, was designed to support diagnosis, prognosis and scientific discovery, according to Rudie and colleagues. According to data that Rudie presented June 28 during a SIIM session focused on machine learning technologies, ARIES performed at the level of academic neuroradiologists in diagnosing complex MRIs for 35 rare and common brain diseases.

 

Test Results Demonstrate Clinical Power

Test data, presented as part of Rudie’s talk, titled “Deep Learning and Bayesian Inference System for Automated Brain MR Diagnosis Performs at Level of Academic Neuroradiologists and Augments Resident Performance,” showed that, when used as an interactive clinical decision support tool, the system augmented the performance of radiology residents to the level of academic neuroradiologists.

When its results were compared to those of different groups of radiologists, ARIES achieved the same accuracy (84 percent) as academic neuro attendings. The system substantially outperformed community radiologists who were right only 52 percent of the time and radiology residents who — on their own — achieved 55 percent accuracy. (With ARIES help, the accuracy of a subgroup of radiology residents soared to 87 percent.)

Based on these tests, the greatest impact from this type of technology, Rudie concluded, may be to augment the diagnostic skills of radiologists with limited experience.

 

How ARIES Works

The automated system, which Rudie framed as a “proof of concept system,” mirrors the perceptual and cognitive steps of image interpretation. He described these as the “two fundamental steps” that people are trained to take when interpreting medical images.

The logic of the automated system comes from a combination of convolutional neural networks, image processing, and Bayesian networks, Rudie said. Abnormal signal features and spatial and anatomic subregion features derived from atlas-based images were combined with clinical information such as patient age, gender and immune status.

Despite ARIES’ stellar solo performance, Rudie insisted at the SIIM meeting that the system not be viewed as better than radiologists. Instead, it should be seen as an aide — its machine intelligence complementing that of people.

To support this contention, Rudie cited the results achieved by pairing ARIES with a subset of radiology residents. In the test, ARIES boosted the decision-making of radiology residents to 87 percent accuracy (compared to 53 percent when the subgroup of radiology residents were separately tested.)

Rudie and colleagues concluded that AI-based clinical decision support technology, such as ARIES, could significantly improve the accuracy and efficiency of image interpretation.

 

Greg Freiherr is a contributing editor to Imaging Technology News (ITN). Over the past three decades, he has served as business and technology editor for publications in medical imaging, as well as consulted for vendors, professional organizations, academia, and financial institutions.

 

Editor’s note: This article is the tenth and final piece in a content series by Greg Freiherr covering the Society for Imaging Informatics in Medicine (SIIM) conference in June.

 

Related content:

Are Shallow Networks Better Than Deep Ones?

How AI Might Provide a Safety Net for Patients and Providers 

Smart Algorithm Extracts Data from Radiology Reports 

PODCAST: Why Blockchain Matters In Medical Imaging

PODCAST: How to Fix Your Enterprise Imaging Network

PODCAST: 5 Low-Cost Ways To Slow Hackers

Cinebot: Efficient Creation of Movies and Animated Gifs for Presentation and Education Directly from PACS

DeepAAA Uses AI to Look Automatically For Aneurysms

Making AI Safe, Effective and Humane for Imaging

Related Content

Paragon Biosciences Launches Qlarity Imaging to Advance FDA-cleared AI Breast Cancer Diagnosis System

Qlarity Imaging’s software is used to assist radiologists in the assessment and characterization of breast lesions. Imaging features are synthesized by an artificial intelligence algorithm into a single value, the QI score, which is analyzed relative to a database of reference abnormalities with known ground truth. Image courtesy of Business Wire.

Technology | Artificial Intelligence | July 18, 2019
Paragon Biosciences LLC announced the launch of its seventh portfolio company, Qlarity Imaging LLC, which was founded...
Johns Hopkins Named Qualified Provider-led Entity to Develop Criteria for Diagnostic Imaging
News | Clinical Decision Support | July 18, 2019
On June 30, 2019, the Centers for Medicare & Medicaid Services (CMS) announced the Johns Hopkins University School...
Anatomage Releases Anatomage Cloud Platform
News | Remote Viewing Systems | July 16, 2019
Anatomage Inc. released an update to the Anatomage Cloud platform that allows medical and dental professionals to...
Graphic courtesy Pixabay

Graphic courtesy Pixabay

Feature | Artificial Intelligence | July 15, 2019 | By Greg Freiherr
Siemens has long focused on automation as a way to make diagnostic equipment faster and more efficient.
Videos | Artificial Intelligence | July 12, 2019
Khan Siddiqui, M.D., founder and CEO of HOPPR, discusses the economic advantages and costs presented by...
Videos | Digital Pathology | July 11, 2019
Toby Cornish, M.D., Ph.D., associate professor and medical director of informatics at the University of Colorado Scho
FDA Clears Koios DS Breast 2.0 AI-based Software
News | Ultrasound Women's Health | July 11, 2019
Koios Medical announced its second 510(k) clearance from the U.S. Food and Drug Administration (FDA).
SimonMed Imaging Implements ProFound AI for 3-D Tomosynthesis
News | Mammography | July 10, 2019
Arizona-based SimonMed Imaging announced their implementation of the first U.S. Food and Drug Administration (FDA)-...
Researchers Use Artificial Intelligence to Deliver Personalized Radiation Therapy
News | Radiation Therapy | July 09, 2019
New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to...