Feature | Artificial Intelligence | July 03, 2019 | By Greg Freiherr

Artificial Intelligence Boosts Radiologist Skills

AI should complement people, says SIIM presenter

AI should complement people, says SIIM presenter

Jeffrey D. Rudie, M.D., Ph.D., a radiology resident at the University of Pennsylvania, presenting at SIIM19.

Greg Freiherr

Greg Freiherr

Smart software improved the performance of resident radiologists to the level of academic experts in neuroradiology, according to research presented at the 2019 meeting of the Society of Imaging Informatics in Medicine (SIIM). Even on its own, the automated system, called ARIES (Adaptive Radiology Interpretive Education System), outperformed groups of radiologists who are not experts in neurology.

The presenter of data indicating the clinical power of this software advised against using artificial intelligence in place of radiologists. ARIES or similar technology could, however, improve the efficiency and accuracy of radiological decision-making, according to Jeffrey D. Rudie, M.D., Ph.D., a radiology resident at the University of Pennsylvania. This kind of technology, he said, has the potential to help radiologists meet the rising complexity and volume of medical imaging.

The ARIES automated system, which quantitatively characterizes brain MRIs, was designed to support diagnosis, prognosis and scientific discovery, according to Rudie and colleagues. According to data that Rudie presented June 28 during a SIIM session focused on machine learning technologies, ARIES performed at the level of academic neuroradiologists in diagnosing complex MRIs for 35 rare and common brain diseases.


Test Results Demonstrate Clinical Power

Test data, presented as part of Rudie’s talk, titled “Deep Learning and Bayesian Inference System for Automated Brain MR Diagnosis Performs at Level of Academic Neuroradiologists and Augments Resident Performance,” showed that, when used as an interactive clinical decision support tool, the system augmented the performance of radiology residents to the level of academic neuroradiologists.

When its results were compared to those of different groups of radiologists, ARIES achieved the same accuracy (84 percent) as academic neuro attendings. The system substantially outperformed community radiologists who were right only 52 percent of the time and radiology residents who — on their own — achieved 55 percent accuracy. (With ARIES help, the accuracy of a subgroup of radiology residents soared to 87 percent.)

Based on these tests, the greatest impact from this type of technology, Rudie concluded, may be to augment the diagnostic skills of radiologists with limited experience.


How ARIES Works

The automated system, which Rudie framed as a “proof of concept system,” mirrors the perceptual and cognitive steps of image interpretation. He described these as the “two fundamental steps” that people are trained to take when interpreting medical images.

The logic of the automated system comes from a combination of convolutional neural networks, image processing, and Bayesian networks, Rudie said. Abnormal signal features and spatial and anatomic subregion features derived from atlas-based images were combined with clinical information such as patient age, gender and immune status.

Despite ARIES’ stellar solo performance, Rudie insisted at the SIIM meeting that the system not be viewed as better than radiologists. Instead, it should be seen as an aide — its machine intelligence complementing that of people.

To support this contention, Rudie cited the results achieved by pairing ARIES with a subset of radiology residents. In the test, ARIES boosted the decision-making of radiology residents to 87 percent accuracy (compared to 53 percent when the subgroup of radiology residents were separately tested.)

Rudie and colleagues concluded that AI-based clinical decision support technology, such as ARIES, could significantly improve the accuracy and efficiency of image interpretation.


Greg Freiherr is a contributing editor to Imaging Technology News (ITN). Over the past three decades, he has served as business and technology editor for publications in medical imaging, as well as consulted for vendors, professional organizations, academia, and financial institutions.


Editor’s note: This article is the tenth and final piece in a content series by Greg Freiherr covering the Society for Imaging Informatics in Medicine (SIIM) conference in June.


Related content:

Are Shallow Networks Better Than Deep Ones?

How AI Might Provide a Safety Net for Patients and Providers 

Smart Algorithm Extracts Data from Radiology Reports 

PODCAST: Why Blockchain Matters In Medical Imaging

PODCAST: How to Fix Your Enterprise Imaging Network

PODCAST: 5 Low-Cost Ways To Slow Hackers

Cinebot: Efficient Creation of Movies and Animated Gifs for Presentation and Education Directly from PACS

DeepAAA Uses AI to Look Automatically For Aneurysms

Making AI Safe, Effective and Humane for Imaging

Related Content

Densitas Wins Major Procurement of Breast Density Software for DIMASOS Breast Screening Trial
News | Breast Density | September 20, 2019
Densitas Inc. announced it has won a procurement of its densitas densityai software for deployment in up to 24 breast...
Varian Unveils Ethos Solution for Adaptive Radiation Therapy
News | Image Guided Radiation Therapy (IGRT) | September 16, 2019
At the 2019 American Society for Radiation Oncology (ASTRO) annual meeting, being held Sept. 15-18 in Chicago, Varian...
FDA Clears GE Healthcare's Critical Care Suite Chest X-ray AI
Technology | X-Ray | September 12, 2019
GE Healthcare announced the U.S. Food and Drug Administration’s (FDA) 510(k) clearance of Critical Care Suite, a...
iCAD's ProFound AI Wins Best New Radiology Solution in 2019 MedTech Breakthrough Awards
News | Computer-Aided Detection Software | September 09, 2019
iCAD Inc. announced MedTech Breakthrough, an independent organization that recognizes the top companies and solutions...
Imaging Biometrics and Medical College of Wisconsin Awarded NIH Grant
News | Neuro Imaging | September 09, 2019
Imaging Biometrics LLC (IB), in collaboration with the Medical College of Wisconsin (MCW), has received a $2.75 million...
A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images

A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images. The algorithm, described at the SBI/ACR Breast Imaging Symposium, used deep learning, a form of machine learning, which is a type of artificial intelligence. Image courtesy of Sarah Eskreis-Winkler, M.D.

Feature | Society of Breast Imaging (SBI) | September 06, 2019 | By Greg Freiherr
The use of smart algorithms has the potential to make healthcare more efficient.
Philips and Fujifilm booths at SIIM 2019.

Philips and Fujifilm booths at SIIM 2019.

Feature | SIIM | September 06, 2019 | By Greg Freiherr
Pragmatism from cybersecurity to enterprise imaging was in vogue at the 2019 meeting of the Society of Imaging Inform
Sudhen Desai, M.D.

Sudhen Desai, M.D.

Feature | Pediatric Imaging | September 04, 2019 | By Jeff Zagoudis
Burnout has become a popular buzzword in today’s business world, meant to describe prolonged periods of stress in the
Heath information technology diagram showing use of cloud storage.
Feature | Archive Cloud Storage | September 04, 2019 | Tyna Callahan
In healthcare, critical systems are being used to deliver vital information and services 24x7x365.
Global Diagnostics Australia Incorporates AI Into Radiology Applications
News | Artificial Intelligence | September 04, 2019
Global Diagnostics Australia (GDA), a subsidiary of the Integral Diagnostics Group (IDX), has adopted artificial...