News | Radiopharmaceuticals and Tracers | June 05, 2019

Novel technique enables simultaneous production of molybdenum-99 and other isotopes without the need for highly enriched, weapons-grade uranium

BGN Technologies Introduces Novel Medical Imaging Radioisotope Production Method

June 5, 2019 – BGN Technologies, the technology transfer company of Ben-Gurion University (BGU), introduced a novel method for producing radioisotopes for nuclear medicine and medical imaging technologies such as computed tomography (CT) scan and positron emission tomography-computed tomography (PET-CT).

Developed by Alexander Tsechanski, Ph.D., from the BGU Department of Nuclear Engineering, the new technique obviates the need for highly enriched, weapons-grade uranium and a nuclear reactor. Nuclear medicine often necessitates the use of technetium-99m (Tc-99m) as the isotope for imaging, an unstable technetium isotope with a only a six-hour half-life that requires onsite production. In order to produce it in an economically efficient way, currently it requires weapons-grade, highly enriched uranium and a nuclear reactor to generate molybdenum-99 (Mo-99), which decays into technetium-99m (Tc-99m).

The new invention uses the naturally occurring and stable molybdenum-100 (Mo-100) isotope and a linear electron accelerator to generate Mo-99 and Tc-99m1. This process can also simultaneously generate other short-lived radioisotopes such as F-18, O-15, N-13 and C-11 as byproducts for use in PET scans.

BGN Technologies said it is currently looking for partners for further developing and commercializing the technology.

For more information: www.in.bgu.ac.il

Related Radiopharmaceuticals Content

Shine Medical Technologies Breaks Ground on U.S. Medical Isotope Production Facility

University of Missouri Research Reactor Files to Start U.S. Production of Medical Isotopes

FDA Clears Path for First Domestic Supply of Tc-99m Isotope

Reference

1. Fedorchenkoa D.V. and Tsechanski A. Photoneutronic aspects of the molybdenum-99 production by means of electron linear accelerators. Nuclear Inst. and Methods in Physics Research B, published online Oct. 23, 2018. https://doi.org/10.1016/j.nimb.2018.10.018


Related Content

News | Radiopharmaceuticals and Tracers

Nov. 18, 2025 — Siemens Healthineers positron emission tomography (PET) radiopharmaceutical companies PETNET Solutions ...

Time November 18, 2025
arrow
News | Radiopharmaceuticals and Tracers

Nov. 11, 2025 — The Society of Nuclear Medicine and Molecular Imaging (SNMMI) has released a position paper outlining ...

Time November 12, 2025
arrow
News | FDA

Oct. 30, 2025 — Sirona Medical has received U.S. Food and Drug Administration (FDA) 510(k) clearance for its Sirona ...

Time October 30, 2025
arrow
News | Radiology Imaging | UC San Diego Health

Oct. 16, 2025 — A strategic collaboration between UC San Diego Health and GE HealthCare will focus on bringing advanced ...

Time October 20, 2025
arrow
News | Prostate Cancer

Sept. 26, 2025 — A new fast and convenient approach to scintigraphy-based monitoring allows physicians to efficiently ...

Time October 03, 2025
arrow
News | Radiopharmaceuticals and Tracers

Sept. 20, 2025 — A promising new PET tracer can visualize a protein that is commonly overexpressed in triple-negative ...

Time September 18, 2025
arrow
News | Radiopharmaceuticals and Tracers

Sept. 11, 2025 — A new PET tracer can provide insights into how spinal cord injuries affect not only the spinal cord ...

Time September 12, 2025
arrow
News | Prostate Cancer

Aug. 13, 2025 — A new study from Denmark shows for the first time that men with biochemically recurrent prostate cancer ...

Time August 15, 2025
arrow
News | Mammography

Aug. 5, 2025 — New Lantern has announced the launch of two specialized viewer modes: the Mammography Viewer Mode and PET ...

Time August 05, 2025
arrow
News | Artificial Intelligence

July 22, 2025 — GE HealthCare has topped a U.S. Food and Drug Administration (FDA) list of AI-enabled medical device ...

Time July 23, 2025
arrow
Subscribe Now