News | Radiopharmaceuticals and Tracers | April 13, 2017

University of Missouri Research Reactor Files to Start U.S. Production of Medical Isotopes

Facility expected to begin sending molybdenum-99 to partners in mid- to late 2018

University of Missouri Research Reactor Files to Start U.S. Production of Medical Isotopes

April 13, 2017 — The University of Missouri Research Reactor (MURR) and its partners Nordion and General Atomics (GA), announced in March that MURR’s License Amendment Request (LAR) has been submitted to the U.S. Nuclear Regulatory Commission (NRC). This marks a critical step towards implementing domestic U.S. production of molybdenum-99 (Mo-99). Once operational, production from this facility will be capable of supporting nearly half of U.S. demand for Mo-99, which currently must be imported from outside North America.

A medical isotope is a safe radioactive substance used by health professionals to diagnose and treat patients who suffer from a variety of conditions, including cardiovascular disease and cancer. Almost 50 million such procedures are performed every year. The most important isotope, technetium-99m (Tc-99m), is produced from Mo-99 and is used in more than 80 percent of all nuclear medicine procedures.

“This LAR submission shows the Nuclear Regulatory Commission that we will have all of the technology, expertise and safety measures needed to begin producing Mo-99 in place and ready to go once approval has been received,” said Ralph Butler, executive director of MURR. “As a public research institution, we are proud to play a partnership role with GA and Nordion in helping America secure a new, domestic source of Mo-99.”

Once approved by the NRC, MURR will begin producing Mo-99 using selective gaseous extraction (SGE), a proprietary technology developed by General Atomics to extract the isotope from Low Enriched Uranium (LEU) targets. This patented approach will produce Mo-99 of the highest specific activity, while avoiding the production of liquid uranium waste, a significant problem with existing technologies that require Highly Enriched Uranium (HEU). Extracted Mo-99 will be transported to Nordion’s facility in Ottawa, Ontario, for final purification and distribution to radiopharmaceutical manufacturers, after which it will be distributed to hospitals and medical facilities around the world.

Nordion will start receiving Mo-99 from MURR in mid- to late 2018, according to Phil Larabie, vice president, medical isotopes for Nordion. In addition, Nordion is maintaining its conventional Mo-99 processing capacity through March 31, 2018, in the event of a significant global shortage of Mo-99.

The MURR project is being conducted with the active support of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA), which was mandated to help secure a new, reliable domestic supply of Mo-99 by the American Medical Isotopes Production Act of 2012 (AMIPA). The approval of MURR’s LAR represents a major step toward achieving this goal.

For more information: www.murr.missouri.edu

Related Content

Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.
The Siemens Biograph Vision PET-CT system was released in mid-2018.

The Siemens Biograph Vision PET-CT system was released in mid-2018.

Feature | Nuclear Imaging | September 07, 2018 | By Dave Fornell
Nuclear imaging technology for both single photon emission computed tomography (SPECT) and positron emission tomography...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Brain Study of 62,454 Scans Identifies Drives of Brain Aging
News | SPECT Imaging | August 27, 2018
In the largest known brain imaging study, scientists from five institutions evaluated 62,454 brain single photon...
Abnormal Protein Concentrations Found in Brains of Military Personnel With Suspected CTE

Researchers are using the tracer, which is injected into a patient, then seen with a PET scan, to see if it is possible to diagnose chronic traumatic encephalopathy in living patients. In this image, warmer colors indicate a higher concentration of the tracer, which binds to abnormal proteins in the brain. Credit UCLA Health.

News | PET Imaging | August 24, 2018
August 24, 2018 — In a small study of
PET Tracer Identifies Estrogen Receptor Expression Differences in Breast Cancer Patients
News | PET Imaging | August 09, 2018
In metastatic breast cancer, prognosis and treatment is largely influenced by estrogen receptor (ER) expression of the...
Novel PET Imaging Method Could Track and Guide Type 1 Diabetes Therapy
News | PET Imaging | August 03, 2018
Researchers have discovered a new nuclear medicine test that could improve care of patients with type 1 diabetes. The...
Researchers Trace Parkinson’s Damage in the Heart
News | PET Imaging | July 17, 2018
A new way to examine stress and inflammation in the heart will help Parkinson’s researchers test new therapies and...
Siemens Healthineers Announces FDA Clearance of syngo.via VB30 Molecular Imaging Software
Technology | Nuclear Imaging | July 16, 2018
At the 2018 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI), June 23-26 in Philadelphia...
Overlay Init