News | Radiopharmaceuticals and Tracers | June 05, 2019

Novel technique enables simultaneous production of molybdenum-99 and other isotopes without the need for highly enriched, weapons-grade uranium

BGN Technologies Introduces Novel Medical Imaging Radioisotope Production Method

June 5, 2019 – BGN Technologies, the technology transfer company of Ben-Gurion University (BGU), introduced a novel method for producing radioisotopes for nuclear medicine and medical imaging technologies such as computed tomography (CT) scan and positron emission tomography-computed tomography (PET-CT).

Developed by Alexander Tsechanski, Ph.D., from the BGU Department of Nuclear Engineering, the new technique obviates the need for highly enriched, weapons-grade uranium and a nuclear reactor. Nuclear medicine often necessitates the use of technetium-99m (Tc-99m) as the isotope for imaging, an unstable technetium isotope with a only a six-hour half-life that requires onsite production. In order to produce it in an economically efficient way, currently it requires weapons-grade, highly enriched uranium and a nuclear reactor to generate molybdenum-99 (Mo-99), which decays into technetium-99m (Tc-99m).

The new invention uses the naturally occurring and stable molybdenum-100 (Mo-100) isotope and a linear electron accelerator to generate Mo-99 and Tc-99m1. This process can also simultaneously generate other short-lived radioisotopes such as F-18, O-15, N-13 and C-11 as byproducts for use in PET scans.

BGN Technologies said it is currently looking for partners for further developing and commercializing the technology.

For more information: www.in.bgu.ac.il

Related Radiopharmaceuticals Content

Shine Medical Technologies Breaks Ground on U.S. Medical Isotope Production Facility

University of Missouri Research Reactor Files to Start U.S. Production of Medical Isotopes

FDA Clears Path for First Domestic Supply of Tc-99m Isotope

Reference

1. Fedorchenkoa D.V. and Tsechanski A. Photoneutronic aspects of the molybdenum-99 production by means of electron linear accelerators. Nuclear Inst. and Methods in Physics Research B, published online Oct. 23, 2018. https://doi.org/10.1016/j.nimb.2018.10.018

Related Content

News | Nuclear Imaging

January 26, 2022 — On January 24, the Emergency Response Team (ERT) of Nuclear Medicine Europe (NMEu) communicated that ...

Time January 26, 2022
arrow
News | Nuclear Imaging

January 26, 2022 — IBA, a world leader in particle accelerator technology and the leading provider of ...

Time January 26, 2022
arrow
News | Prostate Cancer

January 24, 2022 — New research has confirmed the accuracy of the novel European Association of Urology (EAU) risk ...

Time January 24, 2022
arrow
News | Coronavirus (COVID-19)

January 17, 2022 — The Society of Nuclear Medicine and Molecular Imaging (SNMMI) issued a statement on Jan. 14 regarding ...

Time January 17, 2022
arrow
News | PET-CT

January 12, 2022 — By combining information from two advanced imaging techniques with clinical data, physicians can ...

Time January 12, 2022
arrow
News | Radiology Imaging

January 12, 2022 — Machine-learning methods are being actively developed for computed imaging systems like magnetic ...

Time January 12, 2022
arrow
News | PET Imaging

January 11, 2022 — Clario, a technology company that delivers the leading endpoint technology solutions for clinical ...

Time January 11, 2022
arrow
News | Molecular Imaging

Janaury 10, 2022 — The Department of Energy’s National Nuclear Security Administration (NNSA) and Office of ...

Time January 10, 2022
arrow
News | Proton Therapy

January 3, 2022 — IBA (Ion Beam Applications S.A., EURONEXT), the world leader in particle accelerator technology and ...

Time January 03, 2022
arrow
News | Computed Tomography (CT)

January 3, 2022 — The "Computed Tomography (CT) Scanners Devices and Equipment Global Market Report 2021: COVID-19 ...

Time January 03, 2022
arrow
Subscribe Now