News | Stroke | March 23, 2016

University of Tennessee College of Medicine Launches Mobile Stroke Unit

New unit features CT and CT angiography capabilities to bypass the emergency department altogether and get patients directly into treatment

University of Tennessee, Mobile Stroke Unit, CT angiography, Siemens Somatom Scope
University of Tennessee, Mobile Stroke Unit interior, Siemens Somatom Scope CT scanner

March 23, 2016 — The University of Tennessee College of Medicine in Memphis introduced a new, comprehensive Mobile Stroke Unit, capable of conducting and producing advanced quality imaging for stroke diagnosis and noninvasive computed tomography (CT)-angiography with a Siemens Somatom Scope CT scanner.

The Mobile Stroke Unit creates the ability to diagnose and launch treatment, including tissue plasminogen activator (tPA) treatment and the potent blood pressure drug nicardipine, within the critical first hour time frame. It also provides the ability to select patients for endovascular interventions, neurosurgery and neuro-critical care directly from the prehospital arena.

Other Mobile Stroke Units allow for initial treatment to begin quickly and for prepping for emergency room arrival. The sophistication of The UT College of Medicine Mobile Stroke Unit means a patient will be prepped to go straight to the catheterization laboratory, neuro intensive care unit or hospital stroke unit, bypassing the stop in the emergency department entirely.

“We are thrilled to have this medical first in Memphis. I want to stress that the Mobile Stroke Unit is a product of worldwide industry leaders brought together to create the first-of-its-kind vehicle,” said David Stern, M.D., the Robert Kaplan Executive Dean and vice-Chancellor for Clinical Affairs for The University of Tennessee College of Medicine and The University of Tennessee Health Science Center. “The vehicle framework is from Canada, the Siemens Somatom Scope CT scanner was developed by a German company, the custom assembly took place in New York, with the oversight and direction coming from UT College of Medicine in Memphis, Tenn. led by Dr. Andrei V. Alexandrov, the chairman of the Department of Neurology at The University of Tennessee Health Science Center and Semmes-Murphey Professor, who is originally from Russia.”

Weighing in at more than 14 tons, the unit includes features and capabilities such as:

  • A hospital-quality CT scanner with advanced imaging capabilities to not only allow brain imaging, but also imaging of blood vessels in the brain. Other Mobile Stroke Units in the United States and Europe use smaller portable CT scans that only image the brain (without vessels) and also require the team to move the patient for each slice (picture) that is taken. UT’s Mobile Stroke Unit provides the same number of slices in high resolution as obtained and expected in the hospital setting since it is equipped with a dedicated gantry that automatically moves the patient to obtain images;
  • Due to these advanced imaging capabilities, the Mobile Stroke Unit will be able to bypass hospital emergency departments and take patients directly to endovascular suites, operating rooms, stroke or neurocritical units;
  • It is the largest Mobile Stroke Unit in the world, complete with an internal power source capable of matching regular electrical outlet access;
  • It is the first in the world to be staffed with stroke fellowship-trained, doctorally-prepared nurses certified as advanced neurovascular practitioners (ANVP-B); and
  • The Mobile Stroke Unit capacity includes the ability to transport trainees and researchers interested in building the science of early stroke management.

“We have a tremendous burden of stroke in Shelby County, with a stroke rate per 100,000 population that is 37 percent higher than the national average,” said Stern. “The goal of the Mobile Stroke Unit is to minimize morbidity and mortality, to have more patients walk out of the hospital fully functional. Time is everything for stroke treatment; the quicker we are able to assess and attend to a patient, the better his or her chances are for recovery.”

“If we eliminate the treatment delay getting to and through the emergency room, we can save up to 90 minutes, and as a neurologist, I know that time is brain, so the more time we save, the less likely it is that permanent brain damage will occur in a patient. Our hypothesis is that we will deliver hospital-level standard of stroke care faster, equally safe, but with better outcomes due to the ability to intervene much earlier,” said Alexandrov. “Our ‘time to treatment’ target is less than one hour.”

The UT Mobile Stroke Unit is funded through a public-private collaboration for which more than $3 million has been raised, which will enable operation for up to three years. The unit will operate 12 hours a day, one week on and one week off beginning late April 2016.

“The Mobile Stroke Unit will be based in the heart of a 10-mile, most-critical-needs areas of Memphis with the highest incidence of stroke, but can be deployed within the entire metro region. We estimate that 300 patients will need to be treated by the Mobile Stroke Unit to prove its effectiveness over the course of three years,” said Alexandrov. “We believe this study will help establish a baseline of results that medical communities worldwide can use to develop and deploy similar programs to affect stroke outcomes. Our goal is a sustainable model for future funding and an overall lowering of morbidity and mortality through early treatment.”

For more information: www.uthsc.edu/medicine

Related Content

Machine Learning Uncovers New Insights Into Human Brain Through fMRI
News | Neuro Imaging | January 11, 2019
An interdisciplinary research team led by scientists from the National University of Singapore (NUS) has successfully...
3-D Reconstruction of Ichthyosaurus Skull

A 3-D reconstruction of the ichthyosaurus skull from a computed tomography (CT) scan. Image courtesy of Nigel Larkin, taken at Royal Veterinary College, London.

News | Computed Tomography (CT) | January 09, 2019
A nearly meter-long skull of a giant fossil marine ichthyosaur found in a farmer's field more than 60 years ago has...
SCCT Releases New Guideline for CT Use During TAVR
News | Computed Tomography (CT) | January 08, 2019
The Society of Cardiovascular Computed Tomography (SCCT) has released a new expert consensus document for computed...
Hypertension With Progressive Cerebral Small Vessel Disease Increases Cognitive Impairment Risk
News | Magnetic Resonance Imaging (MRI) | January 08, 2019
Patients with high blood pressure and progression of periventricular white matter hyperintensities showed signs of...
Artificial Intelligence Pinpoints Nine Different Abnormalities in Head Scans

A brain scan (left) showing an intraparenchymal hemorrhage in left frontal region and a scan (right) of a subarachnoid hemorrhage in the left parietal region. Both conditions were accurately detected by the Qure.ai tool. Image courtesy of Nature Medicine.

News | Artificial Intelligence | January 07, 2019
The rise in the use of computed tomography (CT) scans in U.S. emergency rooms has been a well-documented trend1 in...
First Arterial and Venous Atlas of the Human Brain Released
News | Neuro Imaging | January 02, 2019
January 2, 2019 — Imagine an atlas containing an image bank of the blood vessels of the...
CT Technique Expands Possibilities of Imaging Ancient Remains
News | Computed Tomography (CT) | December 27, 2018
Researchers in Sweden using computed tomography (CT) have successfully imaged the soft tissue of an ancient Egyptian...
FDA Approves Exablate Neuro for Tremor-Dominant Parkinson's Treatment
Technology | Focused Ultrasound Therapy | December 21, 2018
Insightec announced that the U.S. Food and Drug Administration (FDA) has approved an expansion of the indication of...