News | Oncology Diagnostics | August 22, 2017

Implanting human tumor samples in mice suggests effectiveness of various treatments

UCLA Study Offers Roadmap to Personalized Therapies for Sarcoma

August 22, 2017 — A new UCLA study is the first to identify patient and tumor characteristics that predict the successful creation of models and which types of sarcomas are most likely to grow as xenografts. The research, which is the first and largest patient-derived orthopedic xenograft (PDOX) study in sarcoma, gives physician-scientists a much-needed roadmap for personalizing therapies for the disease without placing patients at risk for treatment-related complications or ineffective therapy.

Sarcoma is a rare and deadly form of cancer occurring in the bones and connective tissue that affects individuals of all ages. Its aggressiveness, rarity and diversity continue to hinder efforts to identify effective therapies for people with this malignancy. PDOXs are unique models where a patient's individual tumor is grown in mice. Such xenografts have long shown great promise in modeling how sarcoma and other cancers can respond to and resist therapies, but their feasibility for use in individual patients in clinical settings remains unknown.

There are up to 50 types of soft-tissue sarcomas, making each type rare. Consequently, it is challenging for scientists to design clinical trials to identify effective systemic treatments, such as chemotherapy or targeted therapy.

Recent research has shown that PDOXs faithfully reproduce the biological behavior of the human tumor, including treatment response and resistance that accurately mirrors that of the individual patient. Given the overall promise of PDOX, the UCLA team set out to assess the feasibility of generating individual patient PDOX models in a clinical setting and to determine potential factors that facilitate or prevent the successful development of xenografts from people with sarcomas.

In the yearlong study, the UCLA team collected tumor samples from 107 people with soft-tissue sarcomas. Tumor fragments were then surgically implanted into the mice in the anatomic site corresponding to the original tumor location in the patient. The researchers assessed the ability of the models to successfully "establish," meaning that after implantation of the human tumor fragments in the mouse model, a new tumor grew. The tumor fragments could also be subsequently transferred and grown in additional mice for further testing, said Fritz Eilber, M.D., professor of surgery, Division of Surgical Oncology and chief of the Cancer Surgery Service at UCLA, and the senior author of the study.

Eilber and colleagues discovered that only the aggressive, or high-grade, tumors established but not the less aggressive, or low-grade, sarcomas. Of the high-grade tumors that did establish, the highest rates (62 percent) were from people whose tumors had not previously been treated with chemotherapy or radiation. Tumors from people who had undergone pre-operative radiation therapy for their sarcoma saw no successful establishment of PDOX models, and establishment was also lower when patients had received pre-operative chemotherapy (32 percent) compared with those who had untreated tumors.

PDOX establishment rates were as high as 86 percent in some subtypes of untreated aggressive sarcomas and the median time to establishment was 53 days.

The study demonstrates that patient-derived orthotopic xenografts are feasible for use in the clinical setting and can provide oncologists with a roadmap to accurately identify which patients will and will not benefit from a specific therapy. This research has the potential to change the way that people with sarcoma and other cancers are treated.

UCLA researchers are conducting additional studies to learn if individual patient PDOX models can be developed for needle biopsies, as well as determining the potential of PDOX models to guide patient therapy and outcomes.

The research was published online Aug. 2 in JCO Precision Oncology. 

For more information: www.ascopubs.org/journal/po


Related Content

News | PACS

Dec. 1, 2025 — At RSNA 2025, Raidium is introducing its new AI-native PACS Viewer powered by Curia, the first Foundation ...

Time December 01, 2025
arrow
News | Prostate Cancer

Nov. 10, 2025 — Researchers at Wayne State University and the Barbara Ann Karmanos Cancer Institute have developed a ...

Time November 11, 2025
arrow
News | Women's Health

Nov. 3, 2025 — —A new radioimmunotherapy approach has the potential to cure human epidermal growth factor receptor 2 ...

Time November 04, 2025
arrow
Feature | Kyle Hardner

Radiotherapy contributes to about 40% of all cancer cures but still lags behind systemic therapy in funding and ...

Time October 21, 2025
arrow
News | Stereotactic Body Radiation Therapy (SBRT) | American Society for Radiation Oncology

Sept. 29, 2025 — A new clinical trial report finds that stereotactic radiation therapy offers long-term survival ...

Time October 15, 2025
arrow
News | Proton Therapy

Sept. 28, 2025 — Leo Cancer Care has launched Grace, the company's upright photon therapy system. Grace is named after ...

Time October 03, 2025
arrow
News | Radiation Therapy | American Society for Radiation Oncology (ASTRO)

Sept. 29, 2025 — Radiation therapy may offer a comparable and potentially safer alternative to repeat catheter ablation ...

Time September 30, 2025
arrow
News | Radiation Therapy

Sept. 26, 2025 – Accuray Inc. has introduced the Accuray Stellar* solution. Initially for the U.S. market, the new ...

Time September 29, 2025
arrow
News | Computed Tomography (CT)

Sept. 26, 2025 — At the American Society for Radiation Oncology (ASTRO) 2025 annual meeting in San Francisco, Calif ...

Time September 29, 2025
arrow
News | Lung Imaging

Sept. 26, 2025 ― Researchers from the University of Texas MD Anderson Cancer Center will present new data at the ...

Time September 29, 2025
arrow
Subscribe Now